utils.py 18.1 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

13
14
from typing import List, Union

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

Xingjian Shi's avatar
Xingjian Shi committed
19
from omegaconf import OmegaConf
20
from jinja2 import BaseLoader, Environment, StrictUndefined
21
from itertools import islice
sdtblck's avatar
sdtblck committed
22

23
from lm_eval.logger import eval_logger
sdtblck's avatar
sdtblck committed
24
25
26
27
28
29
30
31
32
33
34


class ExitCodeError(Exception):
    pass


def sh(x):
    if os.system(x):
        raise ExitCodeError()


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


Jason Phang's avatar
gpt3  
Jason Phang committed
58
59
60
61
62
63
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
64
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
65
66
67
    if not args_string:
        return {}
    arg_list = args_string.split(",")
Xingjian Shi's avatar
Xingjian Shi committed
68
    args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
Jason Phang's avatar
gpt3  
Jason Phang committed
69
    return args_dict
Leo Gao's avatar
Leo Gao committed
70

Fabrizio Milo's avatar
Fabrizio Milo committed
71

Leo Gao's avatar
Leo Gao committed
72
73
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
74
        yield from iter
Leo Gao's avatar
Leo Gao committed
75
76


77
def chunks(iter, n=0, fn=None):
Leo Gao's avatar
Leo Gao committed
78
    arr = []
79
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
80
        arr.append(x)
81
        if len(arr) == (fn(i) if fn else n):
Leo Gao's avatar
Leo Gao committed
82
83
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
84
85
86
87

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
88

89
90
91
92
93
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
94

95
96
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
97

gakada's avatar
gakada committed
98
99
100
101
102
103
104
class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
105
106
107
108
109
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.warning("{} is not in task list.".format(value))
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
gakada's avatar
gakada committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
127
128
129
130
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
131
132
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
133
    string = re.sub(r" (['.,])", r"\1", string)
134
135
136
    return string


Jason Phang's avatar
Jason Phang committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
164
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
165
166
167
168
169
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
170

Jason Phang's avatar
Jason Phang committed
171
        yield (
lintangsutawika's avatar
lintangsutawika committed
172
173
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
174
175
176
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
177

Leo Gao's avatar
Leo Gao committed
178
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
179
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
180
    a, b = pair
181
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
182

Jason Phang's avatar
Jason Phang committed
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def select_continuation_from_batch_left_padding(
    generations: Union[List[List[int]], torch.Tensor], max_context_size: int
):
    """Select the continuation from the batch, removing prompts of different lengths.
    Args:
        generations (Union[List[List[int]], torch.Tensor]):
            A tensor or list-of-lists of shape [batch_size, sequence length].
        max_context_size (int):
            The size of the biggest context; generations will proceed from that
            index.
    Example:
        PAD     PAD Continue : The dog chased the cat  [every       day of the week]
        Riddle  me    this   : The  dog chased the  cat [yesterday] PAD PAD PAD PAD
    Output:
        [every day of the week]
        [yesterday]  PAD PAD PAD PAD
    """
    return generations[:, max_context_size:]


204
205
206
207
208
class Reorderer:
    def __init__(self, arr, fn):
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
209
210
211
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
212
213
214
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
215

216
217
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
218

219
220
221
222
223
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
224
            for ind in inds:
225
226
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
227

228
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
229

230
231
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
232

haileyschoelkopf's avatar
haileyschoelkopf committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

    def __init__(self, arr, fn):
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


291
292
293
294
295
296
def make_table(result_dict):
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
297
    md_writer.headers = ["Task", "Version", "Filter", "Metric", "Value", "", "Stderr"]
lintangsutawika's avatar
lintangsutawika committed
298
299
300
301
302
303
304
305
306
    latex_writer.headers = [
        "Task",
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
307
308
309
310
311

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
312
313
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
314
315
316
            if m.endswith("_stderr"):
                continue

317
318
319
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
320
            else:
321
                values.append([k, version, f, m, "%.4f" % v, "", ""])
322
323
324
325
326
327
328
329
330
331
332
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


333
334
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
335
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
336
337
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
338

339
340
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
341
342
343
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
344
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
345
346
                "lm-evaluation-harness!"
            )
347
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
348

349
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
350

Fabrizio Milo's avatar
Fabrizio Milo committed
351

Stephen Hogg's avatar
Stephen Hogg committed
352
353
354
355
356
357
358
359
360
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
361
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
362
363
364
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
365
366
367
368
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
369
370

@positional_deprecated
371
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
372
373
374
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
375
376
    import pytest

377
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
378
379
380
381
382
383
384
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
385
386
387
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
388
389
390
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
391
392


393
394
395
396
397
398
399
400
401
402
403
404
405
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
        git_hash = git_hash.decode()
    except subprocess.CalledProcessError:
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
406
407
408
409
410
def import_function(loader, node):

    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
411
    module_name, function_name = function_name.split(".")
lintangsutawika's avatar
lintangsutawika committed
412
413
414
415
416
417
418
419
420
    module_path = os.path.join(yaml_path, "{}.py".format(module_name))

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
421

lintangsutawika's avatar
lintangsutawika committed
422
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
423
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
424
425
426


def load_yaml_config(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
427
    with open(yaml_path, "rb") as file:
lintangsutawika's avatar
lintangsutawika committed
428
429
        yaml_config = yaml.full_load(file)
        yaml_dir = os.path.dirname(yaml_path)
lintangsutawika's avatar
lintangsutawika committed
430
431
432
433

        if "include" in yaml_config:
            include_path = yaml_config["include"]
            del yaml_config["include"]
lintangsutawika's avatar
lintangsutawika committed
434
435
436

            if type(include_path) == str:
                include_path = [include_path]
lintangsutawika's avatar
lintangsutawika committed
437

lintangsutawika's avatar
lintangsutawika committed
438
439
440
441
442
443
            # Load from the last one first
            include_path.reverse()
            final_yaml_config = {}
            for path in include_path:

                # Assumes that path is a full path.
lintangsutawika's avatar
lintangsutawika committed
444
                # If not found, assume the included yaml
lintangsutawika's avatar
lintangsutawika committed
445
446
447
448
449
450
451
                # is in the same dir as the original yaml
                if not os.path.isfile(path):
                    path = os.path.join(yaml_dir, path)

                try:
                    included_yaml_config = load_yaml_config(path)
                    final_yaml_config.update(included_yaml_config)
lintangsutawika's avatar
lintangsutawika committed
452
                except Exception as ex:
lintangsutawika's avatar
lintangsutawika committed
453
                    # If failed to load, ignore
lintangsutawika's avatar
lintangsutawika committed
454
                    raise ex
lintangsutawika's avatar
lintangsutawika committed
455
456
457
458
459
460

            final_yaml_config.update(yaml_config)
            return final_yaml_config
        return yaml_config


461
462
463
def regex_replace(string, pattern, repl, count=0):
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
464

lintangsutawika's avatar
lintangsutawika committed
465

466
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
467
env.filters["regex_replace"] = regex_replace
468
469
470
471
472


def apply_template(template, doc):
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
473
474


475
476
477
478
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
479
480
481
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
482
483


haileyschoelkopf's avatar
haileyschoelkopf committed
484
485
486
487
488
def pad_and_concat(max_length: int, tensors: List[torch.Tensor], padding_side="right"):
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
489
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
490
491
492
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
493

lintangsutawika's avatar
lintangsutawika committed
494
    for i, tensor in enumerate(tensors):
495
        tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
496
497
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
498
499
500
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
501
502
503
504
505
506
507
508
509
510
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
511
512
513
514
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
515
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
516
                            max_length - tensor_len,
517
518
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
519
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
520
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
521
522
523
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
524
525
526
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
527
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
528
529


haileyschoelkopf's avatar
haileyschoelkopf committed
530
531
532
533
534
def clear_torch_cache():
    gc.collect()
    torch.cuda.empty_cache()


lintangsutawika's avatar
lintangsutawika committed
535
536
537
538
539
540
541
542
543
544
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
545
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
    ):
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )