glue.py 17.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
https://openreview.net/pdf?id=rJ4km2R5t7

The General Language Understanding Evaluation (GLUE) benchmark is a collection of
resources for training, evaluating, and analyzing natural language understanding
systems. GLUE consists of:
- A benchmark of nine sentence- or sentence-pair language understanding tasks built
on established existing datasets and selected to cover a diverse range of dataset
sizes, text genres, and degrees of difficulty, and
- A diagnostic dataset designed to evaluate and analyze model performance with
respect to a wide range of linguistic phenomena found in natural language.

Homepage: https://gluebenchmark.com/
15
"""
Jason Phang's avatar
checkin  
Jason Phang committed
16
import numpy as np
Jonathan Tow's avatar
Jonathan Tow committed
17
18
19
from lm_eval.base import rf, Task
from lm_eval.metrics import mean, matthews_corrcoef, f1_score, yesno
from lm_eval.utils import general_detokenize
20

21

22
23
# TODO(jon-tow): Add citations for the individual datasets/tasks that make up GLUE.
_CITATION = """
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
@inproceedings{wang-etal-2018-glue,
    title = "{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding",
    author = "Wang, Alex  and
      Singh, Amanpreet  and
      Michael, Julian  and
      Hill, Felix  and
      Levy, Omer  and
      Bowman, Samuel",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-5446",
    doi = "10.18653/v1/W18-5446",
    pages = "353--355",
    abstract = "Human ability to understand language is \textit{general, flexible, and robust}. In contrast, most NLU models above the word level are designed for a specific task and struggle with out-of-domain data. If we aspire to develop models with understanding beyond the detection of superficial correspondences between inputs and outputs, then it is critical to develop a unified model that can execute a range of linguistic tasks across different domains. To facilitate research in this direction, we present the General Language Understanding Evaluation (GLUE, gluebenchmark.com): a benchmark of nine diverse NLU tasks, an auxiliary dataset for probing models for understanding of specific linguistic phenomena, and an online platform for evaluating and comparing models. For some benchmark tasks, training data is plentiful, but for others it is limited or does not match the genre of the test set. GLUE thus favors models that can represent linguistic knowledge in a way that facilitates sample-efficient learning and effective knowledge-transfer across tasks. While none of the datasets in GLUE were created from scratch for the benchmark, four of them feature privately-held test data, which is used to ensure that the benchmark is used fairly. We evaluate baselines that use ELMo (Peters et al., 2018), a powerful transfer learning technique, as well as state-of-the-art sentence representation models. The best models still achieve fairly low absolute scores. Analysis with our diagnostic dataset yields similarly weak performance over all phenomena tested, with some exceptions.",
}
"""
43

Jonathan Tow's avatar
Jonathan Tow committed
44
45

# Single-Sentence Tasks
Jason Phang's avatar
Jason Phang committed
46
47


Jonathan Tow's avatar
Jonathan Tow committed
48
class CoLA(Task):
Leo Gao's avatar
Leo Gao committed
49
    VERSION = 0
sdtblck's avatar
sdtblck committed
50
51
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
Jonathan Tow's avatar
Jonathan Tow committed
52

Jason Phang's avatar
checkin  
Jason Phang committed
53
54
55
56
57
58
59
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
60
        return False
Jason Phang's avatar
checkin  
Jason Phang committed
61

Jonathan Tow's avatar
Jonathan Tow committed
62
63
64
65
66
67
68
69
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

70
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
71
        return "{}\nQuestion: Does this sentence make sense?\nAnswer:".format(doc["sentence"])
72

73
74
75
76
77
78
    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
        return doc["sentence"]

79
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
80
        return " {}".format({1: "yes", 0: "no"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
81

Jonathan Tow's avatar
Jonathan Tow committed
82
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
83
84
        ll_true, _ = rf.loglikelihood(ctx, " yes")
        ll_false, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
85
        return ll_true, ll_false
86

Jonathan Tow's avatar
Jonathan Tow committed
87
88
89
90
91
92
93
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_true > ll_false
        gold = doc["label"]
        return {
            "mcc": (gold, pred)
        }
94

Jonathan Tow's avatar
Jonathan Tow committed
95
    def higher_is_better(self):
Jason Phang's avatar
checkin  
Jason Phang committed
96
        return {
Jonathan Tow's avatar
Jonathan Tow committed
97
98
99
100
101
102
103
104
105
            "mcc": True
        }

    def aggregation(self):
        return {
            "mcc": matthews_corrcoef
        }


Jonathan Tow's avatar
Jonathan Tow committed
106
class SST(Task):
Leo Gao's avatar
Leo Gao committed
107
    VERSION = 0
Jonathan Tow's avatar
Jonathan Tow committed
108
109
110
111
112
113
114
115
116
117
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
118
        return False
Jonathan Tow's avatar
Jonathan Tow committed
119

Jonathan Tow's avatar
Jonathan Tow committed
120
121
122
123
124
125
126
127
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

Jonathan Tow's avatar
Jonathan Tow committed
128
    def doc_to_text(self, doc):
Leo Gao's avatar
Fix  
Leo Gao committed
129
        return "{}\nQuestion: Is this sentence positive or negative?\nAnswer:".format(
Leo Gao's avatar
Leo Gao committed
130
            general_detokenize(doc["sentence"]),
Jonathan Tow's avatar
Jonathan Tow committed
131
132
133
        )

    def doc_to_target(self, doc):
Leo Gao's avatar
Fix  
Leo Gao committed
134
        return " {}".format({1: "positive", 0: "negative"}[doc["label"]])
Jonathan Tow's avatar
Jonathan Tow committed
135
136

    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
137
138
        ll_positive, _ = rf.loglikelihood(ctx, " positive")
        ll_negative, _ = rf.loglikelihood(ctx, " negative")
Jonathan Tow's avatar
Jonathan Tow committed
139
140
141
142
143
144
145
146
147
148
149
150
151
        return ll_positive, ll_negative

    def process_results(self, doc, results):
        ll_positive, ll_negative = results
        pred = ll_positive > ll_negative
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
Jason Phang's avatar
checkin  
Jason Phang committed
152
153
        }

Jonathan Tow's avatar
Jonathan Tow committed
154
155
156
157
158
159
160
161
    def aggregation(self):
        return {
            "acc": mean
        }


# Inference Tasks

Jason Phang's avatar
checkin  
Jason Phang committed
162

Jonathan Tow's avatar
Jonathan Tow committed
163
class MNLI(Task):
Leo Gao's avatar
Leo Gao committed
164
    VERSION = 0
sdtblck's avatar
sdtblck committed
165
166
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
167

Jason Phang's avatar
checkin  
Jason Phang committed
168
169
170
171
172
173
174
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
175
        return False
Jason Phang's avatar
checkin  
Jason Phang committed
176

Jonathan Tow's avatar
Jonathan Tow committed
177
178
179
180
181
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

Jason Phang's avatar
checkin  
Jason Phang committed
182
183
    def validation_docs(self):
        if self.has_validation_docs():
Jonathan Tow's avatar
Jonathan Tow committed
184
            return self.dataset["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
185
186
187

    def test_docs(self):
        if self.has_test_docs():
Jonathan Tow's avatar
Jonathan Tow committed
188
            return self.dataset["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
189

190
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
191
        return "{}\nQuestion: {} True, False or Neither?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
192
            doc["premise"],
Leo Gao's avatar
Fix  
Leo Gao committed
193
            doc["hypothesis"].strip() + ('' if doc["hypothesis"].strip().endswith('.') else '.'),
Jason Phang's avatar
checkin  
Jason Phang committed
194
        )
195
196
197
198
199
200

    def doc_to_target(self, doc):
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
201

Jonathan Tow's avatar
Jonathan Tow committed
202
203
204
205
206
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_neither, _ = rf.loglikelihood(ctx, " Neither")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_neither, ll_false
207

Jonathan Tow's avatar
Jonathan Tow committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
checkin  
Jason Phang committed
224
225


Jason Phang's avatar
Jason Phang committed
226
class MNLIMismatched(MNLI):
Leo Gao's avatar
Leo Gao committed
227
    VERSION = 0
Jason Phang's avatar
Jason Phang committed
228
229
230

    def validation_docs(self):
        if self.has_validation_docs():
Jonathan Tow's avatar
Jonathan Tow committed
231
            return self.dataset["validation_mismatched"]
Jason Phang's avatar
Jason Phang committed
232
233
234

    def test_docs(self):
        if self.has_test_docs():
Jonathan Tow's avatar
Jonathan Tow committed
235
            return self.dataset["test_mismatched"]
Jason Phang's avatar
Jason Phang committed
236
237


Jonathan Tow's avatar
Jonathan Tow committed
238
class QNLI(Task):
Leo Gao's avatar
Leo Gao committed
239
    VERSION = 0
sdtblck's avatar
sdtblck committed
240
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
241
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
242
243
244
245
246
247
248
249

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
250
        return False
Jason Phang's avatar
Jason Phang committed
251

Jonathan Tow's avatar
Jonathan Tow committed
252
253
254
255
256
257
258
259
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

Jonathan Tow's avatar
Jonathan Tow committed
260
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
261
        return "{}\n{}\nQuestion: Does this response answer the question?\nAnswer:".format(
Jonathan Tow's avatar
Jonathan Tow committed
262
263
264
265
266
267
268
            doc["question"],
            doc["sentence"],
        )

    def doc_to_target(self, doc):
        # True = entailment
        # False = not entailment
Leo Gao's avatar
Fix  
Leo Gao committed
269
        return " {}".format({0: "yes", 1: "no"}[doc["label"]])
Jonathan Tow's avatar
Jonathan Tow committed
270
271

    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
272
273
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        return ll_yes, ll_no

    def process_results(self, doc, results):
        ll_yes, ll_no = results
        pred = ll_no > ll_yes
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }


Jonathan Tow's avatar
Jonathan Tow committed
295
class WNLI(Task):
thomasw21's avatar
thomasw21 committed
296
    VERSION = 1
Jonathan Tow's avatar
Jonathan Tow committed
297
298
299
300
301
302
303
304
305
306
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
307
        return False
Jason Phang's avatar
Jason Phang committed
308

Jonathan Tow's avatar
Jonathan Tow committed
309
310
311
312
313
314
315
316
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

317
    def doc_to_text(self, doc):
thomasw21's avatar
thomasw21 committed
318
        return "{}\nQuestion: {} True or False?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
319
320
321
            doc["sentence1"],
            doc["sentence2"],
        )
322
323

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
324
        # True = entailment
thomasw21's avatar
thomasw21 committed
325
326
        # False = not_entailment
        return " {}".format({0: "False", 1: "True"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
327

Jonathan Tow's avatar
Jonathan Tow committed
328
329
330
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_false, _ = rf.loglikelihood(ctx, " False")
thomasw21's avatar
thomasw21 committed
331
        return ll_true, ll_false
Jonathan Tow's avatar
Jonathan Tow committed
332
333

    def process_results(self, doc, results):
thomasw21's avatar
thomasw21 committed
334
335
        ll_true, ll_false = results
        pred = ll_true > ll_false
Jonathan Tow's avatar
Jonathan Tow committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
350

Jason Phang's avatar
Jason Phang committed
351

Jonathan Tow's avatar
Jonathan Tow committed
352
class RTE(Task):
Leo Gao's avatar
Leo Gao committed
353
    VERSION = 0
sdtblck's avatar
sdtblck committed
354
355
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
356
357
358
359
360
361
362
363

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
364
        return False
Jason Phang's avatar
checkin  
Jason Phang committed
365

Jonathan Tow's avatar
Jonathan Tow committed
366
367
368
369
370
371
372
373
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

374
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
375
        return "{}\nQuestion: {} True or False?\nAnswer:".format(
Jason Phang's avatar
checkin  
Jason Phang committed
376
377
378
            doc["sentence1"],
            doc["sentence2"],
        )
379
380
381
382
383

    def doc_to_target(self, doc):
        # 0 = entailment
        # 1 = not_entailment
        return " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
384

Jonathan Tow's avatar
Jonathan Tow committed
385
386
387
388
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_false
389

Jonathan Tow's avatar
Jonathan Tow committed
390
391
392
393
394
395
396
397
398
399
400
401
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_false > ll_true
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }
Jason Phang's avatar
Jason Phang committed
402

Jonathan Tow's avatar
Jonathan Tow committed
403
404
405
406
    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
Jason Phang committed
407

Jonathan Tow's avatar
Jonathan Tow committed
408
409
410
411

# Similarity and Paraphrase Tasks


Jonathan Tow's avatar
Jonathan Tow committed
412
class MRPC(Task):
Leo Gao's avatar
Leo Gao committed
413
    VERSION = 0
sdtblck's avatar
sdtblck committed
414
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
415
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
416
417
418
419
420
421
422
423

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
Leo Gao's avatar
Leo Gao committed
424
        return False
Jason Phang's avatar
Jason Phang committed
425

Jonathan Tow's avatar
Jonathan Tow committed
426
427
428
429
430
431
432
433
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

434
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
435
436
437
        return "Sentence 1: {}\nSentence 2: {}\nQuestion: Do both sentences mean the same thing?\nAnswer:".format(
            general_detokenize(doc["sentence1"]),
            general_detokenize(doc["sentence2"]),
Jason Phang's avatar
Jason Phang committed
438
        )
439
440

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
441
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
442

Jonathan Tow's avatar
Jonathan Tow committed
443
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
444
445
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
446
        return ll_yes, ll_no
447

Jonathan Tow's avatar
Jonathan Tow committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
468
469


Jonathan Tow's avatar
Jonathan Tow committed
470
class QQP(Task):
Leo Gao's avatar
Leo Gao committed
471
    VERSION = 0
sdtblck's avatar
sdtblck committed
472
473
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
474
475
476
477
478
479
480
481

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
Leo Gao's avatar
Leo Gao committed
482
        return False
Jason Phang's avatar
Jason Phang committed
483

Jonathan Tow's avatar
Jonathan Tow committed
484
485
486
487
488
489
490
491
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

492
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
493
        return "Question 1: {}\nQuestion 2: {}\nQuestion: Do both questions ask the same thing?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
494
495
496
            doc["question1"],
            doc["question2"],
        )
497
498
499

    def doc_to_target(self, doc):
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
500

Jonathan Tow's avatar
Jonathan Tow committed
501
502
503
504
    def construct_requests(self, doc, ctx):
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
        return ll_yes, ll_no
505

Jonathan Tow's avatar
Jonathan Tow committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
526
527


Jonathan Tow's avatar
Jonathan Tow committed
528
class STSB(Task):
Leo Gao's avatar
Leo Gao committed
529
    VERSION = 0
sdtblck's avatar
sdtblck committed
530
531
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
532
533
534
535
536
537
538
539
540
541

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jonathan Tow's avatar
Jonathan Tow committed
542
543
544
545
546
547
548
549
550
551
552
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

    def test_docs(self):
        return self.dataset["test"]

553
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
554
        return "sentence 1: {}\nsentence 2: {}\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
555
556
557
            doc["sentence1"],
            doc["sentence2"],
        )
558
559
560

    def doc_to_target(self, doc):
        return " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
561

Leo Gao's avatar
Leo Gao committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')