drop.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
https://aclanthology.org/attachments/N19-1246.Supplementary.pdf

DROP is a QA dataset which tests comprehensive understanding of paragraphs. In 
this crowdsourced, adversarially-created, 96k question-answering benchmark, a 
system must resolve multiple references in a question, map them onto a paragraph,
and perform discrete operations over them (such as addition, counting, or sorting).

Homepage: https://allenai.org/data/drop

Acknowledgement: This implementation is based on the official evaluation for `DROP`:
https://github.com/allenai/allennlp-reading-comprehension/blob/master/allennlp_rc/eval/drop_eval.py
"""
Jonathan Tow's avatar
Jonathan Tow committed
15
import inspect
Jon Tow's avatar
Jon Tow committed
16
17
import numpy as np
import re
18
import string
Jonathan Tow's avatar
Jonathan Tow committed
19
import lm_eval.datasets.drop.drop
Jon Tow's avatar
Jon Tow committed
20
21
22
23
from scipy.optimize import linear_sum_assignment
from lm_eval.base import Task, rf
from lm_eval.metrics import mean

24

Jonathan Tow's avatar
Jonathan Tow committed
25
_CITATION = """
26
27
28
29
30
31
32
33
@misc{dua2019drop,
    title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs}, 
    author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
    year={2019},
    eprint={1903.00161},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
34
"""
35

36

silentv0x's avatar
silentv0x committed
37
_ARTICLES = re.compile(r"\b(a|an|the)\b", re.UNICODE)
Anish Thite's avatar
Anish Thite committed
38

39

40
class DROP(Task):
Leo Gao's avatar
Leo Gao committed
41
    VERSION = 1
Jonathan Tow's avatar
Jonathan Tow committed
42
43
    DATASET_PATH = inspect.getfile(lm_eval.datasets.drop.drop)
    DATASET_NAME = None
44

Anish Thite's avatar
Anish Thite committed
45
46
    def has_training_docs(self):
        return True
Jon Tow's avatar
Jon Tow committed
47

Anish Thite's avatar
Anish Thite committed
48
49
50
51
52
53
    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

Jonathan Tow's avatar
Jonathan Tow committed
54
    def training_docs(self):
Jon Tow's avatar
Jon Tow committed
55
        if self._training_docs is None:
Jon Tow's avatar
Jon Tow committed
56
            self._training_docs = list(map(self._process_doc, self.dataset["train"]))
Jon Tow's avatar
Jon Tow committed
57
        return self._training_docs
Jonathan Tow's avatar
Jonathan Tow committed
58
59

    def validation_docs(self):
Jon Tow's avatar
Jon Tow committed
60
        return map(self._process_doc, self.dataset["validation"])
Jonathan Tow's avatar
Jonathan Tow committed
61

Jon Tow's avatar
Jon Tow committed
62
    def _process_doc(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
63
64
65
66
67
68
        return {
            "id": doc["query_id"],
            "passage": doc["passage"],
            "question": doc["question"],
            "answers": self.get_answers(doc),
        }
Anish Thite's avatar
Anish Thite committed
69

Jon Tow's avatar
Jon Tow committed
70
    @classmethod
silentv0x's avatar
silentv0x committed
71
    def get_answers(cls, qa):
Jonathan Tow's avatar
Jonathan Tow committed
72
73
74
75
76
77
78
79
80
81
82
83
84
        def _flatten_validated_answers(validated_answers):
            """ Flattens a dict of lists of validated answers.
            {"number": ['1', '8'], ...}
            -> [{"number": ['1'], ...}, {"number": ['8'], ...}]
            """
            vas = []
            for i in range(len(validated_answers["number"])):
                vas.append({
                    "number": validated_answers["number"][i],
                    "date": validated_answers["date"][i],
                    "spans": validated_answers["spans"][i],
                })
            return vas
silentv0x's avatar
silentv0x committed
85
86
        answers = []
        answers_set = set()
Jonathan Tow's avatar
Jonathan Tow committed
87
        candidates = [qa["answer"]] + _flatten_validated_answers(qa["validated_answers"])
silentv0x's avatar
silentv0x committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        for candidate in candidates:
            answer = cls.parse_answer(candidate)
            if answer in answers_set:
                continue
            answers_set.add(answer)
            answers.append(answer)
        return answers

    @classmethod
    def parse_answer(cls, answer):
        # NOTE: Everything is returned as a tuple for uniformity and hashability.
        if answer["number"] != "":
            return (str(answer["number"]),)
        if answer["spans"] != []:
            return tuple(answer["spans"])
        return (" ".join([answer["date"]["day"],
                          answer["date"]["month"],
                          answer["date"]["year"]]).strip(),)
Jon Tow's avatar
Jon Tow committed
106
107
108
109

    def doc_to_text(self, doc):
        return f"Passage: {doc['passage']}\nQuestion: {doc['question']}\nAnswer:"

110
111
112
113
114
115
    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
        return doc['passage'] + " " + doc['question']

Jon Tow's avatar
Jon Tow committed
116
    def doc_to_target(self, doc):
silentv0x's avatar
silentv0x committed
117
        return " " + ", ".join(doc["answers"][0])
Anish Thite's avatar
Anish Thite committed
118

Leo Gao's avatar
Leo Gao committed
119
    def construct_requests(self, doc, ctx):
Jon Tow's avatar
Jon Tow committed
120
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
121
        Requests which will be sent to the LM.
122

Jon Tow's avatar
Jon Tow committed
123
        :param doc:
Leo Gao's avatar
Leo Gao committed
124
            The document as returned from training_docs, validation_docs, or test_docs.
Jon Tow's avatar
Jon Tow committed
125
        :param ctx: str
Jon Tow's avatar
Jon Tow committed
126
            The context string, generated by fewshot_context. This includes the natural
Leo Gao's avatar
Leo Gao committed
127
            language description, as well as the few shot examples, and the question
Jon Tow's avatar
Jon Tow committed
128
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
129
        """
silentv0x's avatar
silentv0x committed
130
        conts = [rf.greedy_until(ctx, ["."])]
Jon Tow's avatar
Jon Tow committed
131
132
        return conts

Leo Gao's avatar
Leo Gao committed
133
    def process_results(self, doc, results):
Jon Tow's avatar
Jon Tow committed
134
135
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
136
137
        the metric for that one document

Jon Tow's avatar
Jon Tow committed
138
        :param doc:
Jon Tow's avatar
Jon Tow committed
139
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
140
141
142
        :param results:
            The results of the requests created in construct_requests.
        """
143
        preds, golds = results, doc["answers"]
silentv0x's avatar
silentv0x committed
144
145
146
147
148
149
150
        max_em = 0
        max_f1 = 0
        for gold_answer in golds:
            exact_match, f1_score = self.get_metrics(preds, gold_answer)
            if gold_answer[0].strip():
                max_em = max(max_em, exact_match)
                max_f1 = max(max_f1, f1_score)
Jon Tow's avatar
Jon Tow committed
151
        return {
silentv0x's avatar
silentv0x committed
152
153
            "em": max_em,
            "f1": max_f1
Jon Tow's avatar
Jon Tow committed
154
        }
Jon Tow's avatar
Jon Tow committed
155

silentv0x's avatar
silentv0x committed
156
157
158
159
160
161
162
    def get_metrics(self, predicted, gold):
        """
        Takes a predicted answer and a gold answer (that are both either a string or a list of
        strings), and returns exact match and the DROP F1 metric for the prediction.  If you are
        writing a script for evaluating objects in memory (say, the output of predictions during
        validation, or while training), this is the function you want to call, after using
        :func:`answer_json_to_strings` when reading the gold answer from the released data file.
163
        """
silentv0x's avatar
silentv0x committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        predicted_bags = self._answer_to_bags(predicted)
        gold_bags = self._answer_to_bags(gold)

        if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len(gold_bags[0]):
            exact_match = 1.0
        else:
            exact_match = 0.0

        f1_per_bag = self._align_bags(predicted_bags[1], gold_bags[1])
        f1 = np.mean(f1_per_bag)
        f1 = round(f1, 2)
        return exact_match, f1

    def _answer_to_bags(self, answer):
        if isinstance(answer, (list, tuple)):
            raw_spans = answer
        else:
            raw_spans = [answer]
        normalized_spans = []
        token_bags = []
        for raw_span in raw_spans:
            normalized_span = self._normalize(raw_span)
            normalized_spans.append(normalized_span)
            token_bags.append(set(normalized_span.split()))
        return normalized_spans, token_bags

    def _align_bags(self, predicted, gold):
        """
        Takes gold and predicted answer sets and first finds the optimal 1-1 alignment
        between them and gets maximum metric values over all the answers.
        """
        scores = np.zeros([len(gold), len(predicted)])
        for gold_index, gold_item in enumerate(gold):
            for pred_index, pred_item in enumerate(predicted):
                if self._match_numbers_if_present(gold_item, pred_item):
                    scores[gold_index, pred_index] = self._compute_f1(pred_item, gold_item)
Jon Tow's avatar
Jon Tow committed
200
        row_ind, col_ind = linear_sum_assignment(-scores)
silentv0x's avatar
silentv0x committed
201
202

        max_scores = np.zeros([max(len(gold), len(predicted))])
Jon Tow's avatar
Jon Tow committed
203
204
205
206
        for row, column in zip(row_ind, col_ind):
            max_scores[row] = max(max_scores[row], scores[row, column])
        return max_scores

silentv0x's avatar
silentv0x committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    def _compute_f1(self, predicted_bag, gold_bag):
        intersection = len(gold_bag.intersection(predicted_bag))
        if not predicted_bag:
            precision = 1.0
        else:
            precision = intersection / float(len(predicted_bag))
        if not gold_bag:
            recall = 1.0
        else:
            recall = intersection / float(len(gold_bag))
        f1 = (
            (2 * precision * recall) / (precision + recall)
            if not (precision == 0.0 and recall == 0.0)
            else 0.0
        )
Jon Tow's avatar
Jon Tow committed
222
223
        return f1

silentv0x's avatar
silentv0x committed
224
225
226
227
228
229
230
231
232
233
    def _match_numbers_if_present(self, gold_bag, predicted_bag):
        gold_numbers = set()
        predicted_numbers = set()
        for word in gold_bag:
            if self._is_number(word):
                gold_numbers.add(word)
        for word in predicted_bag:
            if self._is_number(word):
                predicted_numbers.add(word)
        if (not gold_numbers) or gold_numbers.intersection(predicted_numbers):
234
235
236
237
238
239
240
241
242
            return True
        return False

    def _is_number(self, text):
        try:
            float(text)
            return True
        except ValueError:
            return False
Jon Tow's avatar
Jon Tow committed
243

silentv0x's avatar
silentv0x committed
244
245
    def _remove_articles(self, text):
        return _ARTICLES.sub(" ", text)
246

silentv0x's avatar
silentv0x committed
247
248
    def _white_space_fix(self, text):
        return " ".join(text.split())
249

silentv0x's avatar
silentv0x committed
250
251
252
253
254
255
    def _remove_punc(self, text):
        exclude = set(string.punctuation)
        if not self._is_number(text):
            return "".join(ch for ch in text if ch not in exclude)
        else:
            return text
256

silentv0x's avatar
silentv0x committed
257
258
    def _fix_number(self, text):
        return str(float(text)) if self._is_number(text) else text
259

silentv0x's avatar
Bug fix  
silentv0x committed
260
    def _tokenize(self, text):
silentv0x's avatar
silentv0x committed
261
        return re.split(" |-", text)
262

silentv0x's avatar
silentv0x committed
263
    def _normalize(self, answer):
264
        tokens = [
silentv0x's avatar
silentv0x committed
265
266
            self._white_space_fix(self._remove_articles(self._fix_number(self._remove_punc(token.lower()))))
            for token in self._tokenize(answer)
267
        ]
Jon Tow's avatar
Fixes  
Jon Tow committed
268
        tokens = [token for token in tokens if token.strip()]
Jon Tow's avatar
Jon Tow committed
269
270
        normalized = " ".join(tokens).strip()
        return normalized
Leo Gao's avatar
Leo Gao committed
271
272
273
274

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
Jon Tow's avatar
Jon Tow committed
275
276
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
Leo Gao's avatar
Leo Gao committed
277
        """
Jon Tow's avatar
Jon Tow committed
278
279
280
281
        return {
            "em": mean,
            "f1": mean
        }
Leo Gao's avatar
Leo Gao committed
282
283
284
285

    def higher_is_better(self):
        """
        :returns: {str: bool}
Jon Tow's avatar
Jon Tow committed
286
287
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
Leo Gao's avatar
Leo Gao committed
288
        """
Jon Tow's avatar
Jon Tow committed
289
290
291
292
        return {
            "em": True,
            "f1": True
        }