drop.py 6.88 KB
Newer Older
Anish Thite's avatar
Anish Thite committed
1
import json
Jon Tow's avatar
Jon Tow committed
2
3
4
5
6
7
8
import numpy as np
import re
import transformers.data.metrics.squad_metrics as squad_metrics
from best_download import download_file
from scipy.optimize import linear_sum_assignment
from lm_eval.base import Task, rf
from lm_eval.metrics import mean
Anish Thite's avatar
Anish Thite committed
9
from pathlib import Path
Jon Tow's avatar
Jon Tow committed
10
11
from zipfile import ZipFile

12
13
14
15
16
"""
Acknowledgement: This implementation is based on the official evaluation for `DROP`:
https://github.com/allenai/allennlp-reading-comprehension/blob/master/allennlp_rc/eval/drop_eval.py
"""

Anish Thite's avatar
Anish Thite committed
17

18
class DROP(Task):
Jon Tow's avatar
Jon Tow committed
19
20
21
22
    DATAFOLDER = Path("data/drop")
    URL = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"

    def download(self):
Jon Tow's avatar
Jon Tow committed
23
        if self.DATAFOLDER.exists(): return
Jon Tow's avatar
Jon Tow committed
24
25
26
27
        Path.mkdir(self.DATAFOLDER)
        download_file(self.URL, to=str(self.DATAFOLDER / "drop_dataset.zip"))
        with ZipFile(self.DATAFOLDER / "drop_dataset.zip", "r") as zip:
            zip.extractall(self.DATAFOLDER)
28

Anish Thite's avatar
Anish Thite committed
29
30
    def has_training_docs(self):
        return True
Jon Tow's avatar
Jon Tow committed
31

Anish Thite's avatar
Anish Thite committed
32
33
34
35
36
37
    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

Jon Tow's avatar
Jon Tow committed
38
39
40
41
42
43
44
45
    def fewshot_description(self):
        # TODO: figure out description
        return ""

    def _load_docs(self, docs):
        for doc in docs:
            for qa in doc["qa_pairs"]:
                yield {
Jon Tow's avatar
Jon Tow committed
46
                    "id": qa["query_id"],
Jon Tow's avatar
Jon Tow committed
47
48
49
50
                    "passage": doc["passage"],
                    "question": qa["question"],
                    "answers": self.get_answers(qa["answer"]),
                }
Anish Thite's avatar
Anish Thite committed
51

Jon Tow's avatar
Jon Tow committed
52
53
54
55
    @classmethod
    def get_answers(cls, answers):
        # NOTE: We wrap every non-`list` answer into a list for uniformity.
        if answers["number"] != "":
Jon Tow's avatar
Jon Tow committed
56
            return [str(answers["number"])]
Jon Tow's avatar
Jon Tow committed
57
58
59
60
61
62
63
64
65
        if answers["spans"] != []:
            return answers["spans"]
        return [" ".join([answers["date"]["day"],
                          answers["date"]["month"],
                          answers["date"]["year"]]).strip()]

    def training_docs(self):
        docs = json.load(open(self.DATAFOLDER / "drop_dataset" / "drop_dataset_train.json"))
        return self._load_docs([docs[k] for k in docs.keys()])
Anish Thite's avatar
Anish Thite committed
66
67

    def validation_docs(self):
Jon Tow's avatar
Jon Tow committed
68
69
70
        docs = json.load(open(self.DATAFOLDER / "drop_dataset" / "drop_dataset_dev.json"))
        return self._load_docs([docs[k] for k in docs.keys()])

Anish Thite's avatar
Anish Thite committed
71
72
73
    def test_docs(self):
        pass

Jon Tow's avatar
Jon Tow committed
74
75
76
77
78
    def doc_to_text(self, doc):
        return f"Passage: {doc['passage']}\nQuestion: {doc['question']}\nAnswer:"

    def doc_to_target(self, doc):
        return " " + ", ".join(doc["answers"])
Anish Thite's avatar
Anish Thite committed
79

Leo Gao's avatar
Leo Gao committed
80
    def construct_requests(self, doc, ctx):
Jon Tow's avatar
Jon Tow committed
81
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
82
        Requests which will be sent to the LM.
83

Jon Tow's avatar
Jon Tow committed
84
        :param doc:
Leo Gao's avatar
Leo Gao committed
85
            The document as returned from training_docs, validation_docs, or test_docs.
Jon Tow's avatar
Jon Tow committed
86
        :param ctx: str
Jon Tow's avatar
Jon Tow committed
87
            The context string, generated by fewshot_context. This includes the natural
Leo Gao's avatar
Leo Gao committed
88
            language description, as well as the few shot examples, and the question
Jon Tow's avatar
Jon Tow committed
89
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
90
        """
Jon Tow's avatar
Jon Tow committed
91
92
        conts = []
        for _ in doc["answers"]:
Jon Tow's avatar
Jon Tow committed
93
            conts.append(rf.greedy_until(ctx, ["."]))
Jon Tow's avatar
Jon Tow committed
94
95
        return conts

Leo Gao's avatar
Leo Gao committed
96
    def process_results(self, doc, results):
Jon Tow's avatar
Jon Tow committed
97
98
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
99
100
        the metric for that one document

Jon Tow's avatar
Jon Tow committed
101
        :param doc:
Jon Tow's avatar
Jon Tow committed
102
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
103
104
105
        :param results:
            The results of the requests created in construct_requests.
        """
Jon Tow's avatar
Jon Tow committed
106
107
108
109
110
111
112
        golds, preds = doc["answers"], results
        exact_match = self._exact_match(golds, preds)
        f1_score = self._f1_score(golds, preds)
        return {
            "em": exact_match,
            "f1": f1_score
        }
Jon Tow's avatar
Jon Tow committed
113
114
115
116
117
118
119
120

    def _exact_match(self, golds, preds):
        """ Returns the exact match of normalized gold answers and predictions. """
        normalized_golds = set([self._normalize(gold) for gold in golds])
        normalized_preds = set([self._normalize(pred) for pred in preds])
        return int(normalized_golds == normalized_preds)

    def _f1_score(self, golds, preds):
Jon Tow's avatar
Jon Tow committed
121
        """Returns the average F1-score over normalized gold answers and predictions. """
Jon Tow's avatar
Jon Tow committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        gold_bags = self._answer_to_bags(golds)
        pred_bags = self._answer_to_bags(preds)
        f1_per_bag = self._align_bags(gold_bags, pred_bags)
        return np.mean(f1_per_bag)

    def _answer_to_bags(self, answers):
        return [set(self._normalize(answer).split()) for answer in answers]

    def _align_bags(self, gold_bags, pred_bags):
        """ Returns the max metric value over all the answers. """
        scores = np.zeros([len(gold_bags), len(pred_bags)])
        for gold_index, gold_bag in enumerate(gold_bags):
            for pred_index, pred_bag in enumerate(pred_bags):
                if self._is_number_match(gold_bag, pred_bag):
Jon Tow's avatar
Fixes  
Jon Tow committed
136
                    scores[gold_index, pred_index] = self._bag_f1(gold_bag, pred_bag)
Jon Tow's avatar
Jon Tow committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        row_ind, col_ind = linear_sum_assignment(-scores)
        max_scores = np.zeros([max(len(gold_bags), len(pred_bags))])
        for row, column in zip(row_ind, col_ind):
            max_scores[row] = max(max_scores[row], scores[row, column])
        return max_scores

    def _bag_f1(self, gold_bag, pred_bag):
        intersection = len(gold_bag.intersection(pred_bag))
        if intersection == 0:
            return 0.0
        precision = intersection / float(len(pred_bag)) if pred_bag else 1.0
        recall = intersection / float(len(gold_bag)) if gold_bag else 1.0
        f1 = (2 * precision * recall) / (precision + recall)
        return f1

    def _is_number_match(self, gold_bag, pred_bag):
        gold_numbers = set(filter(lambda s: s.isnumeric(), list(gold_bag)))
        pred_numbers = set(filter(lambda s: s.isnumeric(), list(pred_bag)))
        return (not gold_numbers) or gold_numbers.intersection(pred_numbers)

    def _normalize(self, answer):
        def tokenize(text):
            return re.split(" |-", text)
        tokens = [squad_metrics.normalize_answer(token) for token in tokenize(answer)]
Jon Tow's avatar
Fixes  
Jon Tow committed
161
        tokens = [token for token in tokens if token.strip()]
Jon Tow's avatar
Jon Tow committed
162
163
        normalized = " ".join(tokens).strip()
        return normalized
Leo Gao's avatar
Leo Gao committed
164
165
166
167

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
Jon Tow's avatar
Jon Tow committed
168
169
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
Leo Gao's avatar
Leo Gao committed
170
        """
Jon Tow's avatar
Jon Tow committed
171
172
173
174
        return {
            "em": mean,
            "f1": mean
        }
Leo Gao's avatar
Leo Gao committed
175
176
177
178

    def higher_is_better(self):
        """
        :returns: {str: bool}
Jon Tow's avatar
Jon Tow committed
179
180
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
Leo Gao's avatar
Leo Gao committed
181
        """
Jon Tow's avatar
Jon Tow committed
182
183
184
185
        return {
            "em": True,
            "f1": True
        }