drop.py 9.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
https://aclanthology.org/attachments/N19-1246.Supplementary.pdf

DROP is a QA dataset which tests comprehensive understanding of paragraphs. In 
this crowdsourced, adversarially-created, 96k question-answering benchmark, a 
system must resolve multiple references in a question, map them onto a paragraph,
and perform discrete operations over them (such as addition, counting, or sorting).

Homepage: https://allenai.org/data/drop

Acknowledgement: This implementation is based on the official evaluation for `DROP`:
https://github.com/allenai/allennlp-reading-comprehension/blob/master/allennlp_rc/eval/drop_eval.py
"""
Jonathan Tow's avatar
Jonathan Tow committed
15
import inspect
Jon Tow's avatar
Jon Tow committed
16
17
import numpy as np
import re
18
import string
Jonathan Tow's avatar
Jonathan Tow committed
19
import lm_eval.datasets.drop.drop
Jon Tow's avatar
Jon Tow committed
20
21
22
23
from scipy.optimize import linear_sum_assignment
from lm_eval.base import Task, rf
from lm_eval.metrics import mean

24

Jonathan Tow's avatar
Jonathan Tow committed
25
_CITATION = """
26
27
28
29
30
31
32
33
34
35
36
@misc{dua2019drop,
    title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs}, 
    author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
    year={2019},
    eprint={1903.00161},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""


silentv0x's avatar
silentv0x committed
37
_ARTICLES = re.compile(r"\b(a|an|the)\b", re.UNICODE)
Anish Thite's avatar
Anish Thite committed
38

39

40
class DROP(Task):
Leo Gao's avatar
Leo Gao committed
41
    VERSION = 1
Jonathan Tow's avatar
Jonathan Tow committed
42
43
    DATASET_PATH = inspect.getfile(lm_eval.datasets.drop.drop)
    DATASET_NAME = None
44

Anish Thite's avatar
Anish Thite committed
45
46
    def has_training_docs(self):
        return True
Jon Tow's avatar
Jon Tow committed
47

Anish Thite's avatar
Anish Thite committed
48
49
50
51
52
53
    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

Jonathan Tow's avatar
Jonathan Tow committed
54
55
56
57
58
59
60
61
62
63
64
65
66
    def training_docs(self):
        return map(self._convert_standard, self.dataset["train"])

    def validation_docs(self):
        return map(self._convert_standard, self.dataset["validation"])

    def _convert_standard(self, doc):
        return {
            "id": doc["query_id"],
            "passage": doc["passage"],
            "question": doc["question"],
            "answers": self.get_answers(doc),
        }
Anish Thite's avatar
Anish Thite committed
67

Jon Tow's avatar
Jon Tow committed
68
    @classmethod
silentv0x's avatar
silentv0x committed
69
    def get_answers(cls, qa):
Jonathan Tow's avatar
Jonathan Tow committed
70
71
72
73
74
75
76
77
78
79
80
81
82
        def _flatten_validated_answers(validated_answers):
            """ Flattens a dict of lists of validated answers.
            {"number": ['1', '8'], ...}
            -> [{"number": ['1'], ...}, {"number": ['8'], ...}]
            """
            vas = []
            for i in range(len(validated_answers["number"])):
                vas.append({
                    "number": validated_answers["number"][i],
                    "date": validated_answers["date"][i],
                    "spans": validated_answers["spans"][i],
                })
            return vas
silentv0x's avatar
silentv0x committed
83
84
        answers = []
        answers_set = set()
Jonathan Tow's avatar
Jonathan Tow committed
85
        candidates = [qa["answer"]] + _flatten_validated_answers(qa["validated_answers"])
silentv0x's avatar
silentv0x committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        for candidate in candidates:
            answer = cls.parse_answer(candidate)
            if answer in answers_set:
                continue
            answers_set.add(answer)
            answers.append(answer)
        return answers

    @classmethod
    def parse_answer(cls, answer):
        # NOTE: Everything is returned as a tuple for uniformity and hashability.
        if answer["number"] != "":
            return (str(answer["number"]),)
        if answer["spans"] != []:
            return tuple(answer["spans"])
        return (" ".join([answer["date"]["day"],
                          answer["date"]["month"],
                          answer["date"]["year"]]).strip(),)
Jon Tow's avatar
Jon Tow committed
104
105
106
107
108

    def doc_to_text(self, doc):
        return f"Passage: {doc['passage']}\nQuestion: {doc['question']}\nAnswer:"

    def doc_to_target(self, doc):
silentv0x's avatar
silentv0x committed
109
        return " " + ", ".join(doc["answers"][0])
Anish Thite's avatar
Anish Thite committed
110

Leo Gao's avatar
Leo Gao committed
111
    def construct_requests(self, doc, ctx):
Jon Tow's avatar
Jon Tow committed
112
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
113
        Requests which will be sent to the LM.
114

Jon Tow's avatar
Jon Tow committed
115
        :param doc:
Leo Gao's avatar
Leo Gao committed
116
            The document as returned from training_docs, validation_docs, or test_docs.
Jon Tow's avatar
Jon Tow committed
117
        :param ctx: str
Jon Tow's avatar
Jon Tow committed
118
            The context string, generated by fewshot_context. This includes the natural
Leo Gao's avatar
Leo Gao committed
119
            language description, as well as the few shot examples, and the question
Jon Tow's avatar
Jon Tow committed
120
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
121
        """
silentv0x's avatar
silentv0x committed
122
        conts = [rf.greedy_until(ctx, ["."])]
Jon Tow's avatar
Jon Tow committed
123
124
        return conts

Leo Gao's avatar
Leo Gao committed
125
    def process_results(self, doc, results):
Jon Tow's avatar
Jon Tow committed
126
127
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
128
129
        the metric for that one document

Jon Tow's avatar
Jon Tow committed
130
        :param doc:
Jon Tow's avatar
Jon Tow committed
131
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
132
133
134
        :param results:
            The results of the requests created in construct_requests.
        """
135
        preds, golds = results, doc["answers"]
silentv0x's avatar
silentv0x committed
136
137
138
139
140
141
142
        max_em = 0
        max_f1 = 0
        for gold_answer in golds:
            exact_match, f1_score = self.get_metrics(preds, gold_answer)
            if gold_answer[0].strip():
                max_em = max(max_em, exact_match)
                max_f1 = max(max_f1, f1_score)
Jon Tow's avatar
Jon Tow committed
143
        return {
silentv0x's avatar
silentv0x committed
144
145
            "em": max_em,
            "f1": max_f1
Jon Tow's avatar
Jon Tow committed
146
        }
Jon Tow's avatar
Jon Tow committed
147

silentv0x's avatar
silentv0x committed
148
149
150
151
152
153
154
    def get_metrics(self, predicted, gold):
        """
        Takes a predicted answer and a gold answer (that are both either a string or a list of
        strings), and returns exact match and the DROP F1 metric for the prediction.  If you are
        writing a script for evaluating objects in memory (say, the output of predictions during
        validation, or while training), this is the function you want to call, after using
        :func:`answer_json_to_strings` when reading the gold answer from the released data file.
155
        """
silentv0x's avatar
silentv0x committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        predicted_bags = self._answer_to_bags(predicted)
        gold_bags = self._answer_to_bags(gold)

        if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len(gold_bags[0]):
            exact_match = 1.0
        else:
            exact_match = 0.0

        f1_per_bag = self._align_bags(predicted_bags[1], gold_bags[1])
        f1 = np.mean(f1_per_bag)
        f1 = round(f1, 2)
        return exact_match, f1

    def _answer_to_bags(self, answer):
        if isinstance(answer, (list, tuple)):
            raw_spans = answer
        else:
            raw_spans = [answer]
        normalized_spans = []
        token_bags = []
        for raw_span in raw_spans:
            normalized_span = self._normalize(raw_span)
            normalized_spans.append(normalized_span)
            token_bags.append(set(normalized_span.split()))
        return normalized_spans, token_bags

    def _align_bags(self, predicted, gold):
        """
        Takes gold and predicted answer sets and first finds the optimal 1-1 alignment
        between them and gets maximum metric values over all the answers.
        """
        scores = np.zeros([len(gold), len(predicted)])
        for gold_index, gold_item in enumerate(gold):
            for pred_index, pred_item in enumerate(predicted):
                if self._match_numbers_if_present(gold_item, pred_item):
                    scores[gold_index, pred_index] = self._compute_f1(pred_item, gold_item)
Jon Tow's avatar
Jon Tow committed
192
        row_ind, col_ind = linear_sum_assignment(-scores)
silentv0x's avatar
silentv0x committed
193
194

        max_scores = np.zeros([max(len(gold), len(predicted))])
Jon Tow's avatar
Jon Tow committed
195
196
197
198
        for row, column in zip(row_ind, col_ind):
            max_scores[row] = max(max_scores[row], scores[row, column])
        return max_scores

silentv0x's avatar
silentv0x committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def _compute_f1(self, predicted_bag, gold_bag):
        intersection = len(gold_bag.intersection(predicted_bag))
        if not predicted_bag:
            precision = 1.0
        else:
            precision = intersection / float(len(predicted_bag))
        if not gold_bag:
            recall = 1.0
        else:
            recall = intersection / float(len(gold_bag))
        f1 = (
            (2 * precision * recall) / (precision + recall)
            if not (precision == 0.0 and recall == 0.0)
            else 0.0
        )
Jon Tow's avatar
Jon Tow committed
214
215
        return f1

silentv0x's avatar
silentv0x committed
216
217
218
219
220
221
222
223
224
225
    def _match_numbers_if_present(self, gold_bag, predicted_bag):
        gold_numbers = set()
        predicted_numbers = set()
        for word in gold_bag:
            if self._is_number(word):
                gold_numbers.add(word)
        for word in predicted_bag:
            if self._is_number(word):
                predicted_numbers.add(word)
        if (not gold_numbers) or gold_numbers.intersection(predicted_numbers):
226
227
228
229
230
231
232
233
234
            return True
        return False

    def _is_number(self, text):
        try:
            float(text)
            return True
        except ValueError:
            return False
Jon Tow's avatar
Jon Tow committed
235

silentv0x's avatar
silentv0x committed
236
237
    def _remove_articles(self, text):
        return _ARTICLES.sub(" ", text)
238

silentv0x's avatar
silentv0x committed
239
240
    def _white_space_fix(self, text):
        return " ".join(text.split())
241

silentv0x's avatar
silentv0x committed
242
243
244
245
246
247
    def _remove_punc(self, text):
        exclude = set(string.punctuation)
        if not self._is_number(text):
            return "".join(ch for ch in text if ch not in exclude)
        else:
            return text
248

silentv0x's avatar
silentv0x committed
249
250
    def _fix_number(self, text):
        return str(float(text)) if self._is_number(text) else text
251

silentv0x's avatar
Bug fix  
silentv0x committed
252
    def _tokenize(self, text):
silentv0x's avatar
silentv0x committed
253
        return re.split(" |-", text)
254

silentv0x's avatar
silentv0x committed
255
    def _normalize(self, answer):
256
        tokens = [
silentv0x's avatar
silentv0x committed
257
258
            self._white_space_fix(self._remove_articles(self._fix_number(self._remove_punc(token.lower()))))
            for token in self._tokenize(answer)
259
        ]
Jon Tow's avatar
Fixes  
Jon Tow committed
260
        tokens = [token for token in tokens if token.strip()]
Jon Tow's avatar
Jon Tow committed
261
262
        normalized = " ".join(tokens).strip()
        return normalized
Leo Gao's avatar
Leo Gao committed
263
264
265
266

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
Jon Tow's avatar
Jon Tow committed
267
268
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
Leo Gao's avatar
Leo Gao committed
269
        """
Jon Tow's avatar
Jon Tow committed
270
271
272
273
        return {
            "em": mean,
            "f1": mean
        }
Leo Gao's avatar
Leo Gao committed
274
275
276
277

    def higher_is_better(self):
        """
        :returns: {str: bool}
Jon Tow's avatar
Jon Tow committed
278
279
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
Leo Gao's avatar
Leo Gao committed
280
        """
Jon Tow's avatar
Jon Tow committed
281
282
283
284
        return {
            "em": True,
            "f1": True
        }