"src/vscode:/vscode.git/clone" did not exist on "c3ec7238e61a8ac5061a1895767900439edcd08f"
utils.py 12.2 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

13
14
from typing import List, Union

15
import gc
16
import torch
sdtblck's avatar
sdtblck committed
17

Xingjian Shi's avatar
Xingjian Shi committed
18
from omegaconf import OmegaConf
19
from jinja2 import BaseLoader, Environment, StrictUndefined
20
from itertools import islice
sdtblck's avatar
sdtblck committed
21

22
from lm_eval.logger import eval_logger
sdtblck's avatar
sdtblck committed
23
24


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


Jason Phang's avatar
gpt3  
Jason Phang committed
48
49
50
51
52
53
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
54
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
55
56
57
    if not args_string:
        return {}
    arg_list = args_string.split(",")
Xingjian Shi's avatar
Xingjian Shi committed
58
    args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
Jason Phang's avatar
gpt3  
Jason Phang committed
59
    return args_dict
Leo Gao's avatar
Leo Gao committed
60

Fabrizio Milo's avatar
Fabrizio Milo committed
61

Leo Gao's avatar
Leo Gao committed
62
63
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
64
        yield from iter
Leo Gao's avatar
Leo Gao committed
65
66


67
def chunks(iter, n=0, fn=None):
Leo Gao's avatar
Leo Gao committed
68
    arr = []
69
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
70
        arr.append(x)
71
        if len(arr) == (fn(i) if fn else n):
Leo Gao's avatar
Leo Gao committed
72
73
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
74
75
76
77

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
78

79
80
81
82
83
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
84

85
86
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
87

gakada's avatar
gakada committed
88
89
90
91
92
93
94
class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
95
96
97
98
99
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.warning("{} is not in task list.".format(value))
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
gakada's avatar
gakada committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
117
118
119
120
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
121
122
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
123
    string = re.sub(r" (['.,])", r"\1", string)
124
125
126
    return string


Jason Phang's avatar
Jason Phang committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
154
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
155
156
157
158
159
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
160

Jason Phang's avatar
Jason Phang committed
161
        yield (
lintangsutawika's avatar
lintangsutawika committed
162
163
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
164
165
166
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
167

Leo Gao's avatar
Leo Gao committed
168
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
169
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
170
    a, b = pair
171
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
172

Jason Phang's avatar
Jason Phang committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def select_continuation_from_batch_left_padding(
    generations: Union[List[List[int]], torch.Tensor], max_context_size: int
):
    """Select the continuation from the batch, removing prompts of different lengths.
    Args:
        generations (Union[List[List[int]], torch.Tensor]):
            A tensor or list-of-lists of shape [batch_size, sequence length].
        max_context_size (int):
            The size of the biggest context; generations will proceed from that
            index.
    Example:
        PAD     PAD Continue : The dog chased the cat  [every       day of the week]
        Riddle  me    this   : The  dog chased the  cat [yesterday] PAD PAD PAD PAD
    Output:
        [every day of the week]
        [yesterday]  PAD PAD PAD PAD
    """
    return generations[:, max_context_size:]


194
195
196
197
198
class Reorderer:
    def __init__(self, arr, fn):
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
199
200
201
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
202
203
204
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
205

206
207
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
208

209
210
211
212
213
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
214
            for ind in inds:
215
216
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
217

218
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
219

220
221
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
222

223
224
225
226
227
228
def make_table(result_dict):
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
229
    md_writer.headers = ["Task", "Version", "Filter", "Metric", "Value", "", "Stderr"]
lintangsutawika's avatar
lintangsutawika committed
230
231
232
233
234
235
236
237
238
    latex_writer.headers = [
        "Task",
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
239
240
241
242
243

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
244
245
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
246
247
248
            if m.endswith("_stderr"):
                continue

249
250
251
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
252
            else:
253
                values.append([k, version, f, m, "%.4f" % v, "", ""])
254
255
256
257
258
259
260
261
262
263
264
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


265
266
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
267
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
268
269
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
270

271
272
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
273
274
275
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
276
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
277
278
                "lm-evaluation-harness!"
            )
279
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
280

281
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
282

Fabrizio Milo's avatar
Fabrizio Milo committed
283

Stephen Hogg's avatar
Stephen Hogg committed
284
285
286
287
288
289
290
291
292
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
293
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
294
295
296
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
297
298
299
300
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
301
302

@positional_deprecated
303
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
304
305
306
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
307
308
    import pytest

309
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
310
311
312
313
314
315
316
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
317
318
319
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
320
321
322
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
323
324


325
326
327
328
329
330
331
332
333
334
335
336
337
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
        git_hash = git_hash.decode()
    except subprocess.CalledProcessError:
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
338
339
340
341
342
def import_function(loader, node):

    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
343
    module_name, function_name = function_name.split(".")
lintangsutawika's avatar
lintangsutawika committed
344
345
346
347
348
349
350
351
352
    module_path = os.path.join(yaml_path, "{}.py".format(module_name))

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
353

lintangsutawika's avatar
lintangsutawika committed
354
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
355
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
356
357
358


def load_yaml_config(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
359
    with open(yaml_path, "rb") as file:
lintangsutawika's avatar
lintangsutawika committed
360
361
        yaml_config = yaml.full_load(file)
        yaml_dir = os.path.dirname(yaml_path)
lintangsutawika's avatar
lintangsutawika committed
362
363
364
365

        if "include" in yaml_config:
            include_path = yaml_config["include"]
            del yaml_config["include"]
lintangsutawika's avatar
lintangsutawika committed
366
367
368

            if type(include_path) == str:
                include_path = [include_path]
lintangsutawika's avatar
lintangsutawika committed
369

lintangsutawika's avatar
lintangsutawika committed
370
371
372
373
374
375
            # Load from the last one first
            include_path.reverse()
            final_yaml_config = {}
            for path in include_path:

                # Assumes that path is a full path.
lintangsutawika's avatar
lintangsutawika committed
376
                # If not found, assume the included yaml
lintangsutawika's avatar
lintangsutawika committed
377
378
379
380
381
382
383
                # is in the same dir as the original yaml
                if not os.path.isfile(path):
                    path = os.path.join(yaml_dir, path)

                try:
                    included_yaml_config = load_yaml_config(path)
                    final_yaml_config.update(included_yaml_config)
lintangsutawika's avatar
lintangsutawika committed
384
                except Exception as ex:
lintangsutawika's avatar
lintangsutawika committed
385
                    # If failed to load, ignore
lintangsutawika's avatar
lintangsutawika committed
386
                    raise ex
lintangsutawika's avatar
lintangsutawika committed
387
388
389
390
391
392

            final_yaml_config.update(yaml_config)
            return final_yaml_config
        return yaml_config


393
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
394
395
396
397
398


def apply_template(template, doc):
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
399
400


401
402
403
404
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
405
406
407
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
408
409


410
411
412
def clear_torch_cache():
    gc.collect()
    torch.cuda.empty_cache()