base.py 31.2 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
thefazzer's avatar
thefazzer committed
3
import numpy as np
4
import random
Leo Gao's avatar
Leo Gao committed
5
import re
6
7
8
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
9
import datasets
10
from sqlitedict import SqliteDict
11
from tqdm import tqdm
12
import torch
Leo Gao's avatar
Leo Gao committed
13
import torch.nn.functional as F
14
15
from accelerate import find_executable_batch_size

&'s avatar
& committed
16

17
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
18
from lm_eval import utils
19
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
20

Jason Phang's avatar
Jason Phang committed
21

Leo Gao's avatar
Leo Gao committed
22
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
23
24
25
    def __init__(self):
        self.cache_hook = CacheHook(None)

26
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
27
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
28
        """Compute log-likelihood of generating a continuation from a context.
Fabrizio Milo's avatar
Fabrizio Milo committed
29
        Downstream tasks should attempt to use loglikelihood instead of other
Leo Gao's avatar
Leo Gao committed
30
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
31

Leo Gao's avatar
Leo Gao committed
32
33
34
        :param requests: list
            A list of pairs (context, continuation)
            context: str
Fabrizio Milo's avatar
Fabrizio Milo committed
35
                Context string. Implementations of LM must be able to handle an
Leo Gao's avatar
Leo Gao committed
36
                empty context string.
Leo Gao's avatar
Leo Gao committed
37
            continuation: str
Fabrizio Milo's avatar
Fabrizio Milo committed
38
39
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
Leo Gao's avatar
Leo Gao committed
40
41
42
43
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
44
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
45
            isgreedy:
Jason Phang's avatar
Jason Phang committed
46
47
48
49
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

50
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
51
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
52
53
54
55
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
Fabrizio Milo's avatar
Fabrizio Milo committed
56
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
Jason Phang's avatar
Jason Phang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
89
90
91
        """
        pass

&'s avatar
& committed
92
    # TODO: Add an optional max length
93
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
94
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
95
96
97
98
99
100
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
101
            until: [str]
Fabrizio Milo's avatar
Fabrizio Milo committed
102
                The string sequences to generate until. These string sequences
Leo Gao's avatar
Leo Gao committed
103
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
104
105
106
107
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
108
        """
Leo Gao's avatar
Leo Gao committed
109
110
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
111
    @classmethod
112
113
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
114
115
116
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
117

Leo Gao's avatar
Leo Gao committed
118
119
120
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
121

122
class BaseLM(LM):
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

148
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
149
150
151
    def tok_encode(self, string: str):
        pass

152
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
153
154
    def tok_decode(self, tokens: Iterable[int]):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
155

156
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
157
158
    def _model_generate(self, context, max_length, eos_token_id):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
159

160
161
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
162
        """
163
164
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
165

166
        returns: a torch tensor of shape [batch, sequence, vocab] with the
167
        logits returned from the model
168
169
        """
        pass
170

Leo Gao's avatar
Leo Gao committed
171
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    # TODO: enforce this somehow

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
        # TODO: automatic batch size detection for vectorization

        loglikelihoods = []
Fabrizio Milo's avatar
Fabrizio Milo committed
194
195
196
197
198
199
200
201
202
203
204
205
        for (string,) in tqdm(requests):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
206
207
208

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

209
210
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
Fabrizio Milo's avatar
Fabrizio Milo committed
211
212
213
214
            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

215
216
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
Fabrizio Milo's avatar
Fabrizio Milo committed
217

218
219
220
221
222
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

223
224
225
226
227
228
229
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
230
231
232
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
233
234
235
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
236
            return -len(toks), tuple(toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
237

238
        
Fabrizio Milo's avatar
Fabrizio Milo committed
239
        re_ord = utils.Reorderer(requests, _collate)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
        _, context_enc, continuation_enc = re_ord.get_reordered()[0] 
        max_context = len(context_enc) + len(continuation_enc)
        if self.batch_size == 'auto':
            print('Passed argument batch_size = auto. Detecting largest batch size')
            @find_executable_batch_size(starting_batch_size=512) # if OOM, then halves batch_size and tries again
            def forward_batch(batch_size):
                test_batch = torch.ones((batch_size, max_context), device=self.device).long()
                self._model_call(test_batch) 
                return batch_size
            
            batch_size = forward_batch() 
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

Fabrizio Milo's avatar
Fabrizio Milo committed
257
        for chunk in utils.chunks(
258
            tqdm(re_ord.get_reordered(), disable=disable_tqdm), self.batch_size if self.batch_size != "auto" else adaptive_batch_size
Fabrizio Milo's avatar
Fabrizio Milo committed
259
        ):
260
            inps = []
261
            cont_toks_list = []
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
278
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
279
                # gpt2    \               \
280
281
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
282
283
284

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
Fabrizio Milo's avatar
Fabrizio Milo committed
285
286
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
287
                ).to(self.device)
Fabrizio Milo's avatar
Fabrizio Milo committed
288
                (inplen,) = inp.shape
289
290
291
292

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
Fabrizio Milo's avatar
Fabrizio Milo committed
293
294
295
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )
296

297
                # pad length from seq to padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
298
299
300
301
302
303
304
305
306
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
307

308
309
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
310
311
                inplens.append(inplen)

312
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
313
314
315
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]
316

Fabrizio Milo's avatar
Fabrizio Milo committed
317
318
319
            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):
320

321
322
                # Slice to original seq length
                contlen = len(cont_toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
323
324
325
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]
326

327
                # Check if per-token argmax is exactly equal to continuation
328
                greedy_tokens = logits.argmax(dim=-1)
Fabrizio Milo's avatar
Fabrizio Milo committed
329
330
331
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
332
333
                max_equal = (greedy_tokens == cont_toks).all()

334
335
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
Fabrizio Milo's avatar
Fabrizio Milo committed
336
337
338
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]
339

340
                # Answer: (log prob, is-exact-match)
341
342
343
344
345
346
347
348
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

Fabrizio Milo's avatar
Fabrizio Milo committed
349
        return re_ord.get_original(res)
Fabrizio Milo's avatar
Fabrizio Milo committed
350

351
    def greedy_until(self, requests):
Fabrizio Milo's avatar
Fabrizio Milo committed
352
        # TODO: implement fully general `until` that handles until that are
353
        #       multiple tokens or that span multiple tokens correctly
354
355
356
357
358
359

        # TODO: extract to TokenizedLM?
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
360
            return len(toks), x[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
361

Fabrizio Milo's avatar
Fabrizio Milo committed
362
        re_ord = utils.Reorderer(requests, _collate)
363

Fabrizio Milo's avatar
Fabrizio Milo committed
364
        for context, until in tqdm(re_ord.get_reordered()):
365
366
            if isinstance(until, str):
                until = [until]
367

Fabrizio Milo's avatar
Fabrizio Milo committed
368
            (primary_until,) = self.tok_encode(until[0])
369

Fabrizio Milo's avatar
Fabrizio Milo committed
370
371
372
            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)
373

Fabrizio Milo's avatar
Fabrizio Milo committed
374
375
376
377
378
            cont = self._model_generate(
                context_enc, context_enc.shape[1] + self.max_gen_toks, primary_until
            )

            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])
379
380
381

            for term in until:
                s = s.split(term)[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
382

383
384
            # partial caching
            self.cache_hook.add_partial("greedy_until", (context, until), s)
Fabrizio Milo's avatar
Fabrizio Milo committed
385

386
            res.append(s)
Fabrizio Milo's avatar
Fabrizio Milo committed
387

Fabrizio Milo's avatar
Fabrizio Milo committed
388
        return re_ord.get_original(res)
Leo Gao's avatar
Leo Gao committed
389

Leo Gao's avatar
Leo Gao committed
390

391
class Task(abc.ABC):
&'s avatar
&amp; committed
392
393
394
395
396
397
398
399
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
400

Jon Tow's avatar
Jon Tow committed
401
402
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Jonathan Tow's avatar
Jonathan Tow committed
403
404
405
406
407
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

Jon Tow's avatar
Jon Tow committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
432
        self._training_docs = None
433
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
434

Jon Tow's avatar
Jon Tow committed
435
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
Fabrizio Milo's avatar
Fabrizio Milo committed
436
        """Downloads and returns the task dataset.
Jonathan Tow's avatar
Jonathan Tow committed
437
438
        Override this method to download the dataset from a custom API.

Jon Tow's avatar
Jon Tow committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
Jonathan Tow's avatar
Jonathan Tow committed
459
460
461
462
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
Jon Tow's avatar
Jon Tow committed
463
464
            data_dir=data_dir,
            cache_dir=cache_dir,
Fabrizio Milo's avatar
Fabrizio Milo committed
465
            download_mode=download_mode,
Jonathan Tow's avatar
Jonathan Tow committed
466
        )
sdtblck's avatar
sdtblck committed
467

468
469
470
471
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return False

472
    @abstractmethod
473
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
474
        """Whether the task has a training set"""
475
        pass
476

477
    @abstractmethod
478
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
479
480
481
        """Whether the task has a validation set"""
        pass

482
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
483
484
    def has_test_docs(self):
        """Whether the task has a test set"""
485
486
        pass

Leo Gao's avatar
Leo Gao committed
487
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
488
489
490
491
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
492
        return []
493

Leo Gao's avatar
Leo Gao committed
494
    def validation_docs(self):
495
496
497
498
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
499
        return []
500

Leo Gao's avatar
Leo Gao committed
501
    def test_docs(self):
502
503
504
505
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
506
        return []
Leo Gao's avatar
Leo Gao committed
507

Jon Tow's avatar
Jon Tow committed
508
509
510
511
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
Jon Tow's avatar
Jon Tow committed
512
        E.g. `map(self._process_doc, self.dataset["validation"])`
Jon Tow's avatar
Jon Tow committed
513
514
515
516
517
518

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

519
    def fewshot_examples(self, k, rnd):
520
521
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
522

Leo Gao's avatar
Leo Gao committed
523
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
524

525
    def doc_to_decontamination_query(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
526
527
528
529
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False
530

531
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
532
533
534
    def doc_to_text(self, doc):
        pass

535
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
536
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
537
        pass
Leo Gao's avatar
Leo Gao committed
538

539
    @abstractmethod
540
    def construct_requests(self, doc, ctx):
Fabrizio Milo's avatar
Fabrizio Milo committed
541
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
542
543
        Requests which will be sent to the LM.

544
545
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
546
        :param ctx: str
Fabrizio Milo's avatar
Fabrizio Milo committed
547
            The context string, generated by fewshot_context. This includes the natural
548
            language description, as well as the few shot examples, and the question
Fabrizio Milo's avatar
Fabrizio Milo committed
549
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
550
        """
Leo Gao's avatar
Leo Gao committed
551
        pass
552

553
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
554
    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
555
556
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
557
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
558
559
560
561
562

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
563
        """
Leo Gao's avatar
Leo Gao committed
564
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
565

566
    @abstractmethod
567
568
    def aggregation(self):
        """
&'s avatar
&amp; committed
569
        :returns: {str: [metric_score] -> float}
Fabrizio Milo's avatar
Fabrizio Milo committed
570
            A dictionary where keys are the names of submetrics and values are
&'s avatar
&amp; committed
571
            functions that aggregate a list of metric scores
572
573
574
        """
        pass

575
    @abstractmethod
576
577
578
    def higher_is_better(self):
        """
        :returns: {str: bool}
Fabrizio Milo's avatar
Fabrizio Milo committed
579
            A dictionary where keys are the names of submetrics and values are
580
581
582
583
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
584
    def fewshot_description(self):
585
        import warnings
Fabrizio Milo's avatar
Fabrizio Milo committed
586

587
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
588
            "`fewshot_description` will be removed in futures versions. Pass "
589
            "any custom descriptions to the `evaluate` function instead.",
Fabrizio Milo's avatar
Fabrizio Milo committed
590
591
            DeprecationWarning,
        )
Jason Phang's avatar
checkin  
Jason Phang committed
592
593
        return ""

594
    @utils.positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
595
596
597
598
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        """Returns a fewshot context string that is made up of a prepended description
599
600
601
602
603
604
605
606
607
608
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
609
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
610
611
612
613
614
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
Fabrizio Milo's avatar
Fabrizio Milo committed
615
616
617
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
618
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
619
            "The `provide_description` arg will be removed in future versions. To prepend "
620
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
621
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
622
        )
623
624
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
625
626
627
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
628

629
        description = description + "\n\n" if description else ""
630

631
632
        if num_fewshot == 0:
            labeled_examples = ""
633
        else:
634
635
636
637
638
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
639
                    self._fewshot_docs = list(
Fabrizio Milo's avatar
Fabrizio Milo committed
640
641
642
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
643
                    )
644

645
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
646

647
648
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
649

Fabrizio Milo's avatar
Fabrizio Milo committed
650
651
652
653
654
655
656
657
658
            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )
Leo Gao's avatar
Update  
Leo Gao committed
659

660
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
661
662
663
        return description + labeled_examples + example


Jon Tow's avatar
Jon Tow committed
664
class MultipleChoiceTask(Task):
Leo Gao's avatar
Leo Gao committed
665
    def doc_to_target(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
666
        return " " + doc["choices"][doc["gold"]]
Leo Gao's avatar
Leo Gao committed
667

Leo Gao's avatar
Leo Gao committed
668
669
    def construct_requests(self, doc, ctx):
        lls = [
Fabrizio Milo's avatar
Fabrizio Milo committed
670
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
Leo Gao's avatar
Leo Gao committed
671
672
673
674
675
676
677
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

Fabrizio Milo's avatar
Fabrizio Milo committed
678
        acc = 1.0 if np.argmax(results) == gold else 0.0
679
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
Fabrizio Milo's avatar
Fabrizio Milo committed
680
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
Leo Gao's avatar
Leo Gao committed
681
682

        return {
Leo Gao's avatar
Leo Gao committed
683
684
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
685
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
686

Leo Gao's avatar
Leo Gao committed
687
688
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
689
690
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
691
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
692

Leo Gao's avatar
Leo Gao committed
693
694
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
695
696
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
697
698
699
        }


Jason Phang's avatar
Jason Phang committed
700
class PerplexityTask(Task, abc.ABC):
701
702
703
704
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return True

Jason Phang's avatar
Jason Phang committed
705
706
707
708
709
710
711
    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

Fabrizio Milo's avatar
Fabrizio Milo committed
712
713
714
715
716
717
718
719
720
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
721
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
722
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
723
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
724
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
725
        )
726
727
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
728
729
730
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
731

Jason Phang's avatar
Jason Phang committed
732
733
734
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
735
736
737
738
739
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
740

741
742
743
    def doc_to_decontamination_query(self, doc):
        return doc

Jason Phang's avatar
Jason Phang committed
744
    def doc_to_text(self, doc):
745
        return ""
Jason Phang's avatar
Jason Phang committed
746
747

    def doc_to_target(self, doc):
748
        return doc
Jason Phang's avatar
Jason Phang committed
749
750
751

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
752
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
753
754
755
        return req

    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
756
        (loglikelihood,) = results
Leo Gao's avatar
Leo Gao committed
757
        words = self.count_words(doc)
758
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
759
        return {
Leo Gao's avatar
Leo Gao committed
760
            "word_perplexity": (loglikelihood, words),
761
            "byte_perplexity": (loglikelihood, bytes_),
762
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
763
764
765
766
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
767
768
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
769
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
770
771
        }

772
773
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
774
        return len(doc.encode("utf-8"))
775
776
777

    @classmethod
    def count_words(cls, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
778
        """Downstream tasks with custom word boundaries should override this!"""
Leo Gao's avatar
Leo Gao committed
779
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
780

Jason Phang's avatar
Jason Phang committed
781

Leo Gao's avatar
Leo Gao committed
782
783
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
Fabrizio Milo's avatar
Fabrizio Milo committed
784
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()
Leo Gao's avatar
Leo Gao committed
785
786


Leo Gao's avatar
Leo Gao committed
787
788
class CacheHook:
    def __init__(self, cachinglm):
Fabrizio Milo's avatar
Fabrizio Milo committed
789
        if cachinglm is None:
Leo Gao's avatar
Leo Gao committed
790
791
792
793
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
Fabrizio Milo's avatar
Fabrizio Milo committed
794

Leo Gao's avatar
Leo Gao committed
795
796
797
798
799
800
801
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
802
803
class CachingLM:
    def __init__(self, lm, cache_db):
804
805
806
807
808
809
810
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
811
812
        self.lm = lm
        self.cache_db = cache_db
813
814
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
815
816
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
817
818
819
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
820
821
822
823
    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
Fabrizio Milo's avatar
Fabrizio Milo committed
824

Leo Gao's avatar
Leo Gao committed
825
826
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
827
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
828
829
830
831
832
833
834
835
836
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
Fabrizio Milo's avatar
Fabrizio Milo committed
837

838
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
839
840
841
842
843
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
844
845
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
846
847
848
849

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
850
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
851
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
852
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
853
854

            return res
Fabrizio Milo's avatar
Fabrizio Milo committed
855

Leo Gao's avatar
Leo Gao committed
856
        return fn
Fabrizio Milo's avatar
Fabrizio Milo committed
857

Leo Gao's avatar
Leo Gao committed
858
859
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
860

Jason Phang's avatar
Jason Phang committed
861

862
REQUEST_RETURN_LENGTHS = {
Fabrizio Milo's avatar
Fabrizio Milo committed
863
864
865
    "loglikelihood": 2,
    "greedy_until": None,
    "loglikelihood_rolling": None,
866
867
868
}


869
class Request:
Leo Gao's avatar
Leo Gao committed
870
871
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
Fabrizio Milo's avatar
Fabrizio Milo committed
872
873
874
            raise NotImplementedError(
                "The request type {} is not implemented!".format(request_type)
            )
Leo Gao's avatar
Leo Gao committed
875

Leo Gao's avatar
Leo Gao committed
876
        self.request_type = request_type
877
878
        self.args = args
        self.index = index
Fabrizio Milo's avatar
Fabrizio Milo committed
879

880
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
881
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
882
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
883
884
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
885

886
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
887
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
888
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
889
        return Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
890

Leo Gao's avatar
Leo Gao committed
891
    def __eq__(self, other):
Fabrizio Milo's avatar
Fabrizio Milo committed
892
893
894
895
896
        return (
            self.request_type == other.request_type
            and self.args == other.args
            and self.index == other.index
        )
Leo Gao's avatar
Leo Gao committed
897

Leo Gao's avatar
Leo Gao committed
898
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
899
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
900

Jason Phang's avatar
Jason Phang committed
901

Leo Gao's avatar
Leo Gao committed
902
903
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
904
905
        def fn(*args):
            return Request(attr, args)
Fabrizio Milo's avatar
Fabrizio Milo committed
906

Leo Gao's avatar
Leo Gao committed
907
908
909
910
        return fn


rf = RequestFactory()