metrics.py 7.57 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5

import numpy as np
import sacrebleu
Jonathan Tow's avatar
Jonathan Tow committed
6
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8
9
10
11
12
13


def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
14
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
15
16
17
18
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
19
20
21
22
23
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
24
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
25
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
26
27


&'s avatar
& committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def median(arr):
    return arr[len(arr) // 2]


def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
55
        paragraph_id = doc["idx"]["paragraph"]
&'s avatar
& committed
56
        question_id = doc["idx"]["question"]
57
58
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []
&'s avatar
& committed
59
60
61

        gold_label = doc["label"] == 1

62
        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
&'s avatar
& committed
63
64
65
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

66

Leo Gao's avatar
Leo Gao committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
98
99
100
101
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

102

Leo Gao's avatar
Leo Gao committed
103
104
105
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

106
107
108
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
109

&'s avatar
& committed
110
111
112
113
114
115
116
117
118
119
120
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
121
122
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
123
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
124
125
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
126
127
128
129
130
131
132
133
134

def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
135
136
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
137
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
138
139
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
140
141
142
143
144
145
146
147
148
149

def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
150
151
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
152
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
153
154
155
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
156
157
158
159
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
160
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
161
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
162
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
163
164
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
165
166
167
168
169
170
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
171
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
172
        refs = list(refs)
&'s avatar
& committed
173
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
174
        refs = [[ref] for ref in refs]
&'s avatar
& committed
175
176
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
177

&'s avatar
& committed
178
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
179
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
180
        preds = list(preds)
&'s avatar
& committed
181
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
182
183
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
184
185

    return refs, preds
Leo Gao's avatar
Leo Gao committed
186

187
# stderr stuff
Leo Gao's avatar
Leo Gao committed
188

Leo Gao's avatar
Leo Gao committed
189
190
191
192
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
193

Leo Gao's avatar
Leo Gao committed
194
195
196
197
198
199
200
201
202
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
203

204
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
205
206
    import multiprocessing as mp
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
207
208
209
210
211
212
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
    # equivalent to stderr calculated without Bessel's correction in the stddev. 
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
213
    res = []
214
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
215
    from tqdm import tqdm
Leo Gao's avatar
Leo Gao committed
216
    print("bootstrapping for stddev:", f.__name__)
217
218
219
    for bootstrap in tqdm(pool.imap(
            _bootstrap_internal(f, chunk_size),
            [(i, xs) for i in range(iters // chunk_size)]), total=iters // chunk_size):
Leo Gao's avatar
Leo Gao committed
220
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
221
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
222

Leo Gao's avatar
Leo Gao committed
223
    pool.close()
Leo Gao's avatar
Leo Gao committed
224
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
225
226


227
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
228
229
230
231
232
233
234
235
236
237
238
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
239
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
240
241
242
243
244
245
246

    stderr = {
        mean: mean_stderr,
        acc_all: acc_all_stderr
        
    }

Leo Gao's avatar
Leo Gao committed
247
    return stderr.get(metric, None)
Jonathan Tow's avatar
Jonathan Tow committed
248
249
250
251
252
253
254


def yesno(x):
    if x:
        return 'yes'
    else:
        return 'no'