metrics.py 6.76 KB
Newer Older
&'s avatar
& committed
1
import math
&'s avatar
& committed
2
from collections import Iterable
&'s avatar
& committed
3
from pprint import pprint
&'s avatar
& committed
4
5
6
7

import numpy as np
import sacrebleu
import sklearn
Leo Gao's avatar
Leo Gao committed
8
import random
&'s avatar
& committed
9
10
11
12
13
14


def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
15
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
16
17
18
19
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
20
21
22
23
24
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
25
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
26
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
27
28


&'s avatar
& committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def median(arr):
    return arr[len(arr) // 2]


def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

Leo Gao's avatar
Leo Gao committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
97
98
99
100
101
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


&'s avatar
& committed
102
103
104
105
106
107
108
109
110
111
112
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
113
114
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
115
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
116
117
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
118
119
120
121
122
123
124
125
126

def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
127
128
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
129
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
130
131
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
132
133
134
135
136
137
138
139
140
141

def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
142
143
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
144
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
145
146
147
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
148
149
150
151
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
152
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
153
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
154
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
155
156
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
157
158
159
160
161
162
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
163
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
164
        refs = list(refs)
&'s avatar
& committed
165
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
166
        refs = [[ref] for ref in refs]
&'s avatar
& committed
167
168
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
169

&'s avatar
& committed
170
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
171
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
172
        preds = list(preds)
&'s avatar
& committed
173
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
174
175
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
176
177

    return refs, preds
Leo Gao's avatar
Leo Gao committed
178
179
180
181

## stderr stuff


Leo Gao's avatar
Leo Gao committed
182
def bootstrap_stderr(f, xs, iters=100000):
Leo Gao's avatar
Leo Gao committed
183
184
185
186
187
188
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
    # equivalent to stderr calculated without Bessel's correction in the stddev. 
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
189
190
191
192
193
194
195
    rnd = random.Random()
    rnd.seed(42)
    res = []
    from tqdm import trange
    print("bootstrapping for stddev:", f.__name__)
    for i in trange(iters):
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
196
197
        bootstrap = f(rnd.choices(xs, k=len(xs)))
        res.append(bootstrap)
Leo Gao's avatar
Leo Gao committed
198

Leo Gao's avatar
Leo Gao committed
199
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213


def stderr_for_metric(metric):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
Leo Gao's avatar
Leo Gao committed
214
        return lambda x: bootstrap_stderr(metric, x)
Leo Gao's avatar
Leo Gao committed
215
216
217
218
219
220
221

    stderr = {
        mean: mean_stderr,
        acc_all: acc_all_stderr
        
    }

Leo Gao's avatar
Leo Gao committed
222
    return stderr.get(metric, None)