metrics.py 7.32 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5
6

import numpy as np
import sacrebleu
import sklearn
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8
9
10
11
12
13


def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
14
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
15
16
17
18
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
19
20
21
22
23
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
24
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
25
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
26
27


&'s avatar
& committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def median(arr):
    return arr[len(arr) // 2]


def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

65

Leo Gao's avatar
Leo Gao committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
97
98
99
100
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

101

Leo Gao's avatar
Leo Gao committed
102
103
104
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

Leo Gao's avatar
Leo Gao committed
105

&'s avatar
& committed
106
107
108
109
110
111
112
113
114
115
116
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
117
118
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
119
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
120
121
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
122
123
124
125
126
127
128
129
130

def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
131
132
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
133
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
134
135
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
136
137
138
139
140
141
142
143
144
145

def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
146
147
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
148
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
149
150
151
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
152
153
154
155
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
156
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
157
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
158
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
159
160
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
161
162
163
164
165
166
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
167
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
168
        refs = list(refs)
&'s avatar
& committed
169
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
170
        refs = [[ref] for ref in refs]
&'s avatar
& committed
171
172
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
173

&'s avatar
& committed
174
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
175
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
176
        preds = list(preds)
&'s avatar
& committed
177
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
178
179
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
180
181

    return refs, preds
Leo Gao's avatar
Leo Gao committed
182

183
# stderr stuff
Leo Gao's avatar
Leo Gao committed
184

Leo Gao's avatar
Leo Gao committed
185
186
187
188
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
189

Leo Gao's avatar
Leo Gao committed
190
191
192
193
194
195
196
197
198
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
199

200
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
201
202
    import multiprocessing as mp
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
203
204
205
206
207
208
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
    # equivalent to stderr calculated without Bessel's correction in the stddev. 
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
209
    res = []
210
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
211
    from tqdm import tqdm
Leo Gao's avatar
Leo Gao committed
212
    print("bootstrapping for stddev:", f.__name__)
213
214
215
    for bootstrap in tqdm(pool.imap(
            _bootstrap_internal(f, chunk_size),
            [(i, xs) for i in range(iters // chunk_size)]), total=iters // chunk_size):
Leo Gao's avatar
Leo Gao committed
216
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
217
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
218

Leo Gao's avatar
Leo Gao committed
219
    pool.close()
Leo Gao's avatar
Leo Gao committed
220
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
221
222


223
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
224
225
226
227
228
229
230
231
232
233
234
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
235
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
236
237
238
239
240
241
242

    stderr = {
        mean: mean_stderr,
        acc_all: acc_all_stderr
        
    }

Leo Gao's avatar
Leo Gao committed
243
    return stderr.get(metric, None)