glue.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
https://openreview.net/pdf?id=rJ4km2R5t7

The General Language Understanding Evaluation (GLUE) benchmark is a collection of
resources for training, evaluating, and analyzing natural language understanding
systems. GLUE consists of:
- A benchmark of nine sentence- or sentence-pair language understanding tasks built
on established existing datasets and selected to cover a diverse range of dataset
sizes, text genres, and degrees of difficulty, and
- A diagnostic dataset designed to evaluate and analyze model performance with
respect to a wide range of linguistic phenomena found in natural language.

Homepage: https://gluebenchmark.com/
15
16
"""
import numpy as np
17
from lm_eval.base import PromptSourceTask, rf, Task
Jonathan Tow's avatar
Jonathan Tow committed
18
19
from lm_eval.metrics import mean, matthews_corrcoef, f1_score, yesno
from lm_eval.utils import general_detokenize
20

21

22
23
# TODO(jon-tow): Add citations for the individual datasets/tasks that make up GLUE.
_CITATION = """
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
@inproceedings{wang-etal-2018-glue,
    title = "{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding",
    author = "Wang, Alex  and
      Singh, Amanpreet  and
      Michael, Julian  and
      Hill, Felix  and
      Levy, Omer  and
      Bowman, Samuel",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-5446",
    doi = "10.18653/v1/W18-5446",
    pages = "353--355",
    abstract = "Human ability to understand language is \textit{general, flexible, and robust}. In contrast, most NLU models above the word level are designed for a specific task and struggle with out-of-domain data. If we aspire to develop models with understanding beyond the detection of superficial correspondences between inputs and outputs, then it is critical to develop a unified model that can execute a range of linguistic tasks across different domains. To facilitate research in this direction, we present the General Language Understanding Evaluation (GLUE, gluebenchmark.com): a benchmark of nine diverse NLU tasks, an auxiliary dataset for probing models for understanding of specific linguistic phenomena, and an online platform for evaluating and comparing models. For some benchmark tasks, training data is plentiful, but for others it is limited or does not match the genre of the test set. GLUE thus favors models that can represent linguistic knowledge in a way that facilitates sample-efficient learning and effective knowledge-transfer across tasks. While none of the datasets in GLUE were created from scratch for the benchmark, four of them feature privately-held test data, which is used to ensure that the benchmark is used fairly. We evaluate baselines that use ELMo (Peters et al., 2018), a powerful transfer learning technique, as well as state-of-the-art sentence representation models. The best models still achieve fairly low absolute scores. Analysis with our diagnostic dataset yields similarly weak performance over all phenomena tested, with some exceptions.",
}
"""
43

Jonathan Tow's avatar
Jonathan Tow committed
44
45

# Single-Sentence Tasks
Jason Phang's avatar
Jason Phang committed
46
47


jon-tow's avatar
jon-tow committed
48
class CoLA(PromptSourceTask):
Leo Gao's avatar
Leo Gao committed
49
    VERSION = 0
sdtblck's avatar
sdtblck committed
50
51
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
Jonathan Tow's avatar
Jonathan Tow committed
52

Jason Phang's avatar
checkin  
Jason Phang committed
53
54
55
56
57
58
59
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
60
        return False
Jason Phang's avatar
checkin  
Jason Phang committed
61

Jonathan Tow's avatar
Jonathan Tow committed
62
63
64
65
66
67
68
69
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

70
71
72
73
74
    # def process_results(self, doc, results):
    #     answer_choices_list = self.prompt.get_answer_choices_list(doc)
    #     pred = np.argmax(results)
    #     target = answer_choices_list.index(self.doc_to_target(doc).strip())
    #     return {"mcc": (target, pred)}
75

76
77
    # def higher_is_better(self):
    #     return {"mcc": True}
Jonathan Tow's avatar
Jonathan Tow committed
78

79
80
    # def aggregation(self):
    #     return {"mcc": matthews_corrcoef}
Jonathan Tow's avatar
Jonathan Tow committed
81
82


jon-tow's avatar
jon-tow committed
83
class SST(PromptSourceTask):
Leo Gao's avatar
Leo Gao committed
84
    VERSION = 0
Jonathan Tow's avatar
Jonathan Tow committed
85
86
87
88
89
90
91
92
93
94
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
95
        return False
Jonathan Tow's avatar
Jonathan Tow committed
96

Jonathan Tow's avatar
Jonathan Tow committed
97
98
99
100
101
102
103
104
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

Jonathan Tow's avatar
Jonathan Tow committed
105
106
107

# Inference Tasks

Jason Phang's avatar
checkin  
Jason Phang committed
108

jon-tow's avatar
jon-tow committed
109
class MNLI(PromptSourceTask):
Leo Gao's avatar
Leo Gao committed
110
    VERSION = 0
sdtblck's avatar
sdtblck committed
111
112
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
113

Jason Phang's avatar
checkin  
Jason Phang committed
114
115
116
117
118
119
120
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
121
        return False
Jason Phang's avatar
checkin  
Jason Phang committed
122

Jonathan Tow's avatar
Jonathan Tow committed
123
124
125
126
127
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

Jason Phang's avatar
checkin  
Jason Phang committed
128
129
    def validation_docs(self):
        if self.has_validation_docs():
Jonathan Tow's avatar
Jonathan Tow committed
130
            return self.dataset["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
131
132
133

    def test_docs(self):
        if self.has_test_docs():
Jonathan Tow's avatar
Jonathan Tow committed
134
            return self.dataset["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
135
136


Jason Phang's avatar
Jason Phang committed
137
class MNLIMismatched(MNLI):
Leo Gao's avatar
Leo Gao committed
138
    VERSION = 0
Jason Phang's avatar
Jason Phang committed
139
140
141

    def validation_docs(self):
        if self.has_validation_docs():
Jonathan Tow's avatar
Jonathan Tow committed
142
            return self.dataset["validation_mismatched"]
Jason Phang's avatar
Jason Phang committed
143
144
145

    def test_docs(self):
        if self.has_test_docs():
Jonathan Tow's avatar
Jonathan Tow committed
146
            return self.dataset["test_mismatched"]
Jason Phang's avatar
Jason Phang committed
147
148


cjlovering's avatar
cjlovering committed
149
class QNLI(PromptSourceTask):
Leo Gao's avatar
Leo Gao committed
150
    VERSION = 0
sdtblck's avatar
sdtblck committed
151
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
152
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
153
154
155
156
157
158
159
160

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
161
        return False
Jason Phang's avatar
Jason Phang committed
162

Jonathan Tow's avatar
Jonathan Tow committed
163
164
165
166
167
168
169
170
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

Jonathan Tow's avatar
Jonathan Tow committed
171

172
class WNLI(PromptSourceTask):
thomasw21's avatar
thomasw21 committed
173
    VERSION = 1
Jonathan Tow's avatar
Jonathan Tow committed
174
175
176
177
178
179
180
181
182
183
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
184
        return False
Jason Phang's avatar
Jason Phang committed
185

Jonathan Tow's avatar
Jonathan Tow committed
186
    def training_docs(self):
187
        return self.dataset["train"]
Jonathan Tow's avatar
Jonathan Tow committed
188
189
190
191

    def validation_docs(self):
        return self.dataset["validation"]

Jason Phang's avatar
Jason Phang committed
192

193
class RTE(PromptSourceTask):
Leo Gao's avatar
Leo Gao committed
194
    VERSION = 0
sdtblck's avatar
sdtblck committed
195
196
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
197
198
199
200
201
202
203
204

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
205
        return False
Jason Phang's avatar
checkin  
Jason Phang committed
206

Jonathan Tow's avatar
Jonathan Tow committed
207
208
209
210
211
212
213
214
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

Jonathan Tow's avatar
Jonathan Tow committed
215
    def higher_is_better(self):
216
        return {"acc": True}
Jason Phang's avatar
Jason Phang committed
217

Jonathan Tow's avatar
Jonathan Tow committed
218
    def aggregation(self):
219
        return {"acc": mean}
Jason Phang's avatar
Jason Phang committed
220

Jonathan Tow's avatar
Jonathan Tow committed
221
222
223
224

# Similarity and Paraphrase Tasks


cjlovering's avatar
cjlovering committed
225
class MRPC(PromptSourceTask):
Leo Gao's avatar
Leo Gao committed
226
    VERSION = 0
sdtblck's avatar
sdtblck committed
227
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
228
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
229
230
231
232
233
234
235
236

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
Leo Gao's avatar
Leo Gao committed
237
        return False
Jason Phang's avatar
Jason Phang committed
238

239
240
    # def stopping_criteria(self):
    #     return "\n###\n"
cjlovering's avatar
cjlovering committed
241

Jonathan Tow's avatar
Jonathan Tow committed
242
243
244
245
246
247
248
249
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

Jason Phang's avatar
Jason Phang committed
250

cjlovering's avatar
cjlovering committed
251
class QQP(PromptSourceTask):
Leo Gao's avatar
Leo Gao committed
252
    VERSION = 0
sdtblck's avatar
sdtblck committed
253
254
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
255
256
257
258
259
260
261
262

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
Leo Gao's avatar
Leo Gao committed
263
        return False
Jason Phang's avatar
Jason Phang committed
264

Jonathan Tow's avatar
Jonathan Tow committed
265
266
267
268
269
270
271
272
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

Jason Phang's avatar
Jason Phang committed
273

Jonathan Tow's avatar
Jonathan Tow committed
274
class STSB(Task):
Leo Gao's avatar
Leo Gao committed
275
    VERSION = 0
sdtblck's avatar
sdtblck committed
276
277
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
278
279
280
281
282
283
284
285
286
287

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jonathan Tow's avatar
Jonathan Tow committed
288
289
290
291
292
293
294
295
296
297
298
    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

    def test_docs(self):
        return self.dataset["test"]

299
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
300
        return "sentence 1: {}\nsentence 2: {}\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
301
302
303
            doc["sentence1"],
            doc["sentence2"],
        )
304
305
306

    def doc_to_target(self, doc):
        return " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
307

Leo Gao's avatar
Leo Gao committed
308
    def construct_requests(self, doc, ctx):
309
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
310
311
312
313
314
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
315
            The context string, generated by fewshot_context. This includes the natural
Leo Gao's avatar
Leo Gao committed
316
            language description, as well as the few shot examples, and the question
317
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
318
319
        """
        # TODO: implement evaluation.
320
321
        raise NotImplementedError("Evaluation not implemented")

Leo Gao's avatar
Leo Gao committed
322
    def process_results(self, doc, results):
323
324
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
325
326
327
328
329
330
331
332
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
333
        raise NotImplementedError("Evaluation not implemented")
Leo Gao's avatar
Leo Gao committed
334
335
336
337

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
338
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
339
340
341
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
342
        raise NotImplementedError("Evaluation not implemented")
Leo Gao's avatar
Leo Gao committed
343
344
345
346

    def higher_is_better(self):
        """
        :returns: {str: bool}
347
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
348
349
350
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
351
        raise NotImplementedError("Evaluation not implemented")