vllm_causallms.py 19.2 KB
Newer Older
1
import copy
Baber Abbasi's avatar
Baber Abbasi committed
2
from importlib.metadata import version
3
4
5
from importlib.util import find_spec
from typing import List, Literal, Optional, Tuple, Union

6
from more_itertools import distribute
Baber Abbasi's avatar
Baber Abbasi committed
7
from packaging.version import parse as parse_version
8
9
from tqdm import tqdm

baberabb's avatar
baberabb committed
10
from lm_eval.api.instance import Instance
11
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
12
from lm_eval.api.registry import register_model
13
from lm_eval.models.utils import Collator, undistribute
14
15
16
17
18
from lm_eval.utils import (
    eval_logger,
    get_rolling_token_windows,
    make_disjoint_window,
)
19

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
20

21
try:
22
    import ray
23
    from vllm import LLM, SamplingParams
24
    from vllm.lora.request import LoRARequest
baberabb's avatar
baberabb committed
25
    from vllm.transformers_utils.tokenizer import get_tokenizer
26
27
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
28

bcicc's avatar
bcicc committed
29

30
eval_logger = eval_logger
baberabb's avatar
baberabb committed
31

baberabb's avatar
baberabb committed
32
33

@register_model("vllm")
34
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
35
36
37
38
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
39
        pretrained: str,
baberabb's avatar
baberabb committed
40
41
42
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
baberabb's avatar
baberabb committed
43
        tokenizer: Optional[str] = None,
baberabb's avatar
baberabb committed
44
        tokenizer_mode: Literal["auto", "slow"] = "auto",
baberabb's avatar
baberabb committed
45
        tokenizer_revision: Optional[str] = None,
46
        add_bos_token: Optional[bool] = False,
47
        prefix_token_id: Optional[int] = None,
baberabb's avatar
baberabb committed
48
        tensor_parallel_size: int = 1,
49
        quantization: Optional[str] = None,
baberabb's avatar
baberabb committed
50
51
        max_gen_toks: int = 256,
        swap_space: int = 4,
baberabb's avatar
baberabb committed
52
        batch_size: Union[str, int] = 1,
baberabb's avatar
baberabb committed
53
        max_batch_size=None,
baberabb's avatar
baberabb committed
54
        max_length: int = None,
55
        max_model_len: int = None,
baberabb's avatar
baberabb committed
56
        seed: int = 1234,
57
        gpu_memory_utilization: float = 0.9,
baberabb's avatar
baberabb committed
58
        device: str = "cuda",
59
        data_parallel_size: int = 1,
bcicc's avatar
bcicc committed
60
        lora_local_path: str = None,
Baber Abbasi's avatar
Baber Abbasi committed
61
        **kwargs,
baberabb's avatar
baberabb committed
62
63
    ):
        super().__init__()
64

65
        if not find_spec("vllm"):
66
            raise Exception(
67
68
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
69
70
            )

baberabb's avatar
baberabb committed
71
        assert "cuda" in device or device is None, "vLLM only supports CUDA"
72
73
74
75
76
        assert (
            max_length is None or max_model_len is None
        ), "Either max_length or max_model_len may be provided, but not both"

        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
77
        self.tensor_parallel_size = int(tensor_parallel_size)
78
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
79
80
81
82
83
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
84
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
85
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
86
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
87
88
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
89
            "max_model_len": int(self._max_length) if self._max_length else None,
baberabb's avatar
baberabb committed
90
91
92
93
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
        }
Baber Abbasi's avatar
Baber Abbasi committed
94
        self.model_args.update(kwargs)
95
96
97
98
99
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
            else batch_size
        )
100
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
101
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
102
        else:
Baber Abbasi's avatar
Baber Abbasi committed
103
104
105
            eval_logger.warning(
                "You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached."
            )
baberabb's avatar
baberabb committed
106
            self.model_args["worker_use_ray"] = True
107
108
109
110
111
112
113
114
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

            from transformers import AutoConfig

            self._config = AutoConfig.from_pretrained(
                pretrained, trust_remote_code=trust_remote_code, revision=revision
            )
baberabb's avatar
nits  
baberabb committed
115
116
117
118
119
120
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
            tokenizer_revision=tokenizer_revision,
        )
121
        self.add_bos_token = add_bos_token
122
123
124
125
126
        self.custom_prefix_token_id = prefix_token_id
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
127

baberabb's avatar
baberabb committed
128
129
        self._max_gen_toks = max_gen_toks

bcicc's avatar
bcicc committed
130
131
132
133
134
135
136
137
        if lora_local_path is not None:
            assert parse_version(version("vllm")) > parse_version(
                "0.3.0"
            ), "lora adapters only compatible with vllm > v0.3.0."
            self.lora_request = LoRARequest("finetuned", 1, lora_local_path)
        else:
            self.lora_request = None

baberabb's avatar
baberabb committed
138
139
140
141
142
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

143
144
145
146
147
148
149
150
151
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

baberabb's avatar
baberabb committed
152
153
154
155
    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
156
157
158
159
160
161
162
163
164
165
166
167
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
168
169
170
171
172

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

baberabb's avatar
baberabb committed
173
174
175
176
    def tok_encode(
        self,
        string: str,
        left_truncate_len=None,
177
        add_special_tokens=None,
baberabb's avatar
baberabb committed
178
179
        truncation=False,
    ):
baberabb's avatar
baberabb committed
180
        """ """
181
182
        if not add_special_tokens:
            add_special_tokens = False or self.add_bos_token
baberabb's avatar
baberabb committed
183
184
185
        encoding = self.tokenizer.encode(
            string, add_special_tokens=add_special_tokens, truncation=truncation
        )
baberabb's avatar
baberabb committed
186
187
188
189
190
191
192
193
194

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
195
        requests: List[List[int]] = None,
baberabb's avatar
baberabb committed
196
197
198
199
200
201
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
        **kwargs,
    ):
        if generate:
202
            kwargs = self.modify_gen_kwargs(kwargs)
baberabb's avatar
baberabb committed
203
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
204
        else:
baberabb's avatar
baberabb committed
205
            sampling_params = SamplingParams(
206
                temperature=0, prompt_logprobs=1, max_tokens=1
baberabb's avatar
baberabb committed
207
            )
208
        if self.data_parallel_size > 1:
Baber Abbasi's avatar
Baber Abbasi committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            # vLLM hangs if tensor_parallel > 1 and resources are set in ray.remote
            # also seems to only work with decorator and not with ray.remote() fn
            # see https://github.com/vllm-project/vllm/issues/973
            # note: this has changed on 0.3.3, and it only works now if num_gpus are set.
            # but then tensor_parallel breaks
            @ray.remote
            def run_inference_one_model(
                model_args: dict, sampling_params, requests: List[List[int]]
            ):
                llm = LLM(**model_args)
                return llm.generate(
                    prompt_token_ids=requests, sampling_params=sampling_params
                )

223
224
225
            # dispatch requests to all self.data_parallel_size workers, in interleaved fashion
            # interleaved important to balance context lengths across workers
            requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
Baber Abbasi's avatar
Baber Abbasi committed
226
227
228
            inputs = ((self.model_args, sampling_params, req) for req in requests)
            object_refs = [run_inference_one_model.remote(*x) for x in inputs]
            results = ray.get(object_refs)
229
230
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
231
            # flatten results
232
            return undistribute(results)
baberabb's avatar
baberabb committed
233

bcicc's avatar
bcicc committed
234
235
236
237
238
239
240
241
242
243
244
245
246
        if self.lora_request is not None:
            outputs = self.model.generate(
                prompt_token_ids=requests,
                sampling_params=sampling_params,
                use_tqdm=True if self.batch_size == "auto" else False,
                lora_request=self.lora_request,
            )
        else:
            outputs = self.model.generate(
                prompt_token_ids=requests,
                sampling_params=sampling_params,
                use_tqdm=True if self.batch_size == "auto" else False,
            )
baberabb's avatar
baberabb committed
247
248
        return outputs

249
250
251
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
baberabb's avatar
baberabb committed
252
253
        loglikelihoods = []

254
        for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
baberabb's avatar
baberabb committed
255
256
            rolling_token_windows = list(
                map(
257
258
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
259
260
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
baberabb's avatar
baberabb committed
261
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
                        context_len=1,
                    ),
                )
            )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods

280
281
282
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
283
        res = []
baberabb's avatar
baberabb committed
284
285
286

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
287
        context_encoding = self.tokenizer(context, add_special_tokens=False).input_ids
baberabb's avatar
baberabb committed
288
289
290
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
291
292
293
294
295
296
297
298

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
299
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
300
301
302
303

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
304
        re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
305
306
307
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
308

309
310
        pbar = tqdm(
            total=len(requests),
311
            disable=(disable_tqdm or (self.rank != 0)),
312
313
            desc="Running generate_until requests",
        )
baberabb's avatar
baberabb committed
314
        # for each different set of kwargs, we execute all requests, by batch.
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
                        until = [until]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
baberabb's avatar
baberabb committed
336
                )
337
            # add EOS token to stop sequences
Baber Abbasi's avatar
Baber Abbasi committed
338
            eos = self.tokenizer.decode(self.eot_token_id)
339
            if not until:
340
341
342
                until = [eos]
            else:
                until.append(eos)
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            # max len for inputs = max length, minus room to generate the max new tokens
            max_ctx_len = self.max_length - max_gen_toks
            context_encoding = [x[-max_ctx_len:] for x in context_encoding]

            # perform batched generation
            cont = self._model_generate(
                requests=context_encoding,
                generate=True,
                max_tokens=max_gen_toks,
                stop=until,
                **kwargs,
            )
baberabb's avatar
baberabb committed
361

362
363
364
365
366
367
368
369
            # cache generations
            for output, context in zip(cont, context):
                generated_text = output.outputs[0].text
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
370
371

        pbar.close()
372
373
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
374
375

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
376
377
378
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
baberabb's avatar
baberabb committed
379
380
381
382
383
384
385
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

386
387
388
389
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
390
        )
391

392
393
394
395
396
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
baberabb's avatar
baberabb committed
397
        for chunk in chunks:
398
            inputs = []
baberabb's avatar
baberabb committed
399
400
401
402
403
404
405
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

406
                inputs.append(inp)
baberabb's avatar
baberabb committed
407
408
                ctxlens.append(ctxlen)

409
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
410

411
412
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
413
414
            ):
                answer = self._parse_logprobs(
415
416
417
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
418
419
420
421
422
423
424
                )

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
425
                pbar.update(1)
baberabb's avatar
baberabb committed
426
427
428
429
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
baberabb's avatar
baberabb committed
430
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
baberabb's avatar
baberabb committed
431
432
433
        """Process logprobs and tokens.

        :param tokens: list
434
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
435
        :param outputs: RequestOutput
436
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
437
438
439
440
441
442
443
444
445
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

446
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
447
448
        continuation_logprobs_dicts = outputs.prompt_logprobs

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
        def coerce_logprob_to_num(logprob):
            # vLLM changed the return type of logprobs from float
            # to a Logprob object storing the float value + extra data
            # (https://github.com/vllm-project/vllm/pull/3065).
            # If we are dealing with vllm's Logprob object, return
            # the logprob value stored as an attribute. Otherwise,
            # return the object itself (which should be a float
            # for older versions of vLLM).
            return getattr(logprob, "logprob", logprob)

        continuation_logprobs_dicts = [
            {
                token: coerce_logprob_to_num(logprob)
                for token, logprob in logprob_dict.items()
            }
            if logprob_dict is not None
            else None
            for logprob_dict in continuation_logprobs_dicts
        ]

baberabb's avatar
baberabb committed
469
        # Calculate continuation_logprobs
470
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
471
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
472
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
473
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
474
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
475
476
477
478
479
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
480
481
482
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
483
484
485
486
487
488
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
489
490

        return continuation_logprobs, is_greedy
491
492
493
494

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
495
496
        do_sample = kwargs.pop("do_sample", None)
        if do_sample is False or "temperature" not in kwargs:
497
498
499
500
501
502
503
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs