vllm_causallms.py 15.8 KB
Newer Older
1
2
3
4
5
6
import copy
from importlib.util import find_spec
from typing import List, Literal, Optional, Tuple, Union

from tqdm import tqdm

baberabb's avatar
baberabb committed
7
from lm_eval.api.instance import Instance
8
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
9
from lm_eval.api.registry import register_model
10
from lm_eval.models.utils import Collator, divide
11
12
13
14
15
from lm_eval.utils import (
    eval_logger,
    get_rolling_token_windows,
    make_disjoint_window,
)
16

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
17

18
try:
19
    import ray
baberabb's avatar
baberabb committed
20
    from ray.util.multiprocessing import Pool
21
    from vllm import LLM, SamplingParams
baberabb's avatar
baberabb committed
22
    from vllm.transformers_utils.tokenizer import get_tokenizer
23
24
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
25

26
eval_logger = eval_logger
baberabb's avatar
baberabb committed
27

baberabb's avatar
baberabb committed
28

baberabb's avatar
baberabb committed
29
# adapted from https://github.com/vllm-project/vllm/issues/367#issuecomment-1788341727
30
31
32
def run_inference_one_model(
    model_args: dict, sampling_params, requests: List[List[int]]
):
baberabb's avatar
baberabb committed
33
34
35
36
    llm = LLM(**model_args)
    return llm.generate(prompt_token_ids=requests, sampling_params=sampling_params)


baberabb's avatar
baberabb committed
37
@register_model("vllm")
38
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
39
40
41
42
43
44
45
46
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained="gpt2",
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
baberabb's avatar
baberabb committed
47
        tokenizer: Optional[str] = None,
baberabb's avatar
baberabb committed
48
        tokenizer_mode: Literal["auto", "slow"] = "auto",
baberabb's avatar
baberabb committed
49
        tokenizer_revision: Optional[str] = None,
50
        add_bos_token: Optional[bool] = False,
baberabb's avatar
baberabb committed
51
        tensor_parallel_size: int = 1,
52
        quantization: Optional[str] = None,
baberabb's avatar
baberabb committed
53
54
        max_gen_toks: int = 256,
        swap_space: int = 4,
baberabb's avatar
baberabb committed
55
        batch_size: Union[str, int] = 1,
baberabb's avatar
baberabb committed
56
        max_batch_size=None,
baberabb's avatar
baberabb committed
57
        max_length: int = None,
58
        max_model_len: int = None,
baberabb's avatar
baberabb committed
59
        seed: int = 1234,
60
        gpu_memory_utilization: float = 0.9,
baberabb's avatar
baberabb committed
61
        device: str = "cuda",
62
        data_parallel_size: int = 1,
baberabb's avatar
baberabb committed
63
64
    ):
        super().__init__()
65

66
        if not find_spec("vllm"):
67
            raise Exception(
68
69
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
70
71
            )

baberabb's avatar
baberabb committed
72
        assert "cuda" in device or device is None, "vLLM only supports CUDA"
73
74
75
76
77
        assert (
            max_length is None or max_model_len is None
        ), "Either max_length or max_model_len may be provided, but not both"

        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
78
        self.tensor_parallel_size = int(tensor_parallel_size)
79
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
80
81
82
83
84
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
85
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
86
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
87
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
88
89
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
90
            "max_model_len": int(self._max_length) if self._max_length else None,
baberabb's avatar
baberabb committed
91
92
93
94
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
        }
95
96
97
98
99
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
            else batch_size
        )
100
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
101
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
102
103
        else:
            self.model_args["worker_use_ray"] = True
104
105
106
107
108
109
110
111
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

            from transformers import AutoConfig

            self._config = AutoConfig.from_pretrained(
                pretrained, trust_remote_code=trust_remote_code, revision=revision
            )
baberabb's avatar
nits  
baberabb committed
112
113
114
115
116
117
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
            tokenizer_revision=tokenizer_revision,
        )
118
        self.add_bos_token = add_bos_token
119

baberabb's avatar
baberabb committed
120
121
122
123
124
125
126
127
128
129
130
        self._max_gen_toks = max_gen_toks

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
131
132
133
134
135
136
137
138
139
140
141
142
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
143
144
145
146
147

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

baberabb's avatar
baberabb committed
148
149
150
151
    def tok_encode(
        self,
        string: str,
        left_truncate_len=None,
152
        add_special_tokens=None,
baberabb's avatar
baberabb committed
153
154
        truncation=False,
    ):
baberabb's avatar
baberabb committed
155
        """ """
156
157
        if not add_special_tokens:
            add_special_tokens = False or self.add_bos_token
baberabb's avatar
baberabb committed
158
159
160
        encoding = self.tokenizer.encode(
            string, add_special_tokens=add_special_tokens, truncation=truncation
        )
baberabb's avatar
baberabb committed
161
162
163
164
165
166
167
168
169

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
170
        requests: List[List[int]] = None,
baberabb's avatar
baberabb committed
171
172
173
174
175
176
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
        **kwargs,
    ):
        if generate:
177
            kwargs = self.modify_gen_kwargs(kwargs)
baberabb's avatar
baberabb committed
178
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
179
        else:
baberabb's avatar
baberabb committed
180
            sampling_params = SamplingParams(
181
                temperature=0, prompt_logprobs=1, max_tokens=1
baberabb's avatar
baberabb committed
182
            )
183
        if self.data_parallel_size > 1:
184
            requests = [list(x) for x in divide(requests, self.data_parallel_size)]
baberabb's avatar
baberabb committed
185
            inputs = [(self.model_args, sampling_params, req) for req in requests]
baberabb's avatar
baberabb committed
186

187
            with Pool(self.data_parallel_size) as pool:
baberabb's avatar
baberabb committed
188
                results = pool.starmap(run_inference_one_model, inputs)
189
190
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
191
192
193
194
195
196
            # flatten results
            return [item for sublist in results for item in sublist]

        outputs = self.model.generate(
            prompt_token_ids=requests,
            sampling_params=sampling_params,
197
            use_tqdm=True if self.batch_size == "auto" else False,
baberabb's avatar
baberabb committed
198
        )
baberabb's avatar
baberabb committed
199
200
        return outputs

baberabb's avatar
baberabb committed
201
    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
baberabb's avatar
baberabb committed
202
203
204
205
206
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests]):
            rolling_token_windows = list(
                map(
207
208
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
209
210
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
baberabb's avatar
baberabb committed
211
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
                        context_len=1,
                    ),
                )
            )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods

    def generate_until(self, requests: List[Instance]) -> List[str]:
231
        res = []
baberabb's avatar
baberabb committed
232
233
234

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
235
        context_encoding = self.tokenizer(context, add_special_tokens=False).input_ids
baberabb's avatar
baberabb committed
236
237
238
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
239
240
241
242
243
244
245
246

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
247
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
248
249
250
251

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
252
        re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
253
254
255
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
256

257
258
259
260
261
        pbar = tqdm(
            total=len(requests),
            disable=(self.rank != 0),
            desc="Running generate_until requests",
        )
baberabb's avatar
baberabb committed
262
        # for each different set of kwargs, we execute all requests, by batch.
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
                        until = [until]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
baberabb's avatar
baberabb committed
284
                )
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
            if not until:
                until = [self.tokenizer.decode(self.eot_token_id)]
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            # max len for inputs = max length, minus room to generate the max new tokens
            max_ctx_len = self.max_length - max_gen_toks
            context_encoding = [x[-max_ctx_len:] for x in context_encoding]

            # perform batched generation
            cont = self._model_generate(
                requests=context_encoding,
                generate=True,
                max_tokens=max_gen_toks,
                stop=until,
                **kwargs,
            )
baberabb's avatar
baberabb committed
305

306
307
308
309
310
311
312
313
            # cache generations
            for output, context in zip(cont, context):
                generated_text = output.outputs[0].text
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
314
315

        pbar.close()
316
317
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
318
319

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
320
321
322
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
baberabb's avatar
baberabb committed
323
324
325
326
327
328
329
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

330
331
332
333
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
334
        )
335

336
337
338
339
340
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
baberabb's avatar
baberabb committed
341
        for chunk in chunks:
342
            inputs = []
baberabb's avatar
baberabb committed
343
344
345
346
347
348
349
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

350
                inputs.append(inp)
baberabb's avatar
baberabb committed
351
352
                ctxlens.append(ctxlen)

353
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
354

355
356
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
357
358
            ):
                answer = self._parse_logprobs(
359
360
361
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
362
363
364
365
366
367
368
                )

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
369
                pbar.update(1)
baberabb's avatar
baberabb committed
370
371
372
373
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
baberabb's avatar
baberabb committed
374
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
baberabb's avatar
baberabb committed
375
376
377
        """Process logprobs and tokens.

        :param tokens: list
378
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
379
        :param outputs: RequestOutput
380
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
381
382
383
384
385
386
387
388
389
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

390
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
391
392
        continuation_logprobs_dicts = outputs.prompt_logprobs

baberabb's avatar
baberabb committed
393
        # Calculate continuation_logprobs
394
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
395
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
396
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
397
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
398
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
399
400
401
402
403
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
404
405
406
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
407
408
409
410
411
412
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
413
414

        return continuation_logprobs, is_greedy
415
416
417
418

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
419
420
        do_sample = kwargs.pop("do_sample", None)
        if do_sample is False or "temperature" not in kwargs:
421
422
423
424
425
426
427
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs