utils.py 15.6 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

13
14
from typing import List, Union

15
import gc
16
import torch
sdtblck's avatar
sdtblck committed
17

Xingjian Shi's avatar
Xingjian Shi committed
18
from omegaconf import OmegaConf
19
from jinja2 import BaseLoader, Environment, StrictUndefined
20
from itertools import islice
haileyschoelkopf's avatar
haileyschoelkopf committed
21

haileyschoelkopf's avatar
haileyschoelkopf committed
22
import transformers
sdtblck's avatar
sdtblck committed
23

24
from lm_eval.logger import eval_logger
sdtblck's avatar
sdtblck committed
25

haileyschoelkopf's avatar
haileyschoelkopf committed
26

sdtblck's avatar
sdtblck committed
27
28
29
30
31
32
33
34
35
class ExitCodeError(Exception):
    pass


def sh(x):
    if os.system(x):
        raise ExitCodeError()


36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


Jason Phang's avatar
gpt3  
Jason Phang committed
59
60
61
62
63
64
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
65
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
66
67
68
    if not args_string:
        return {}
    arg_list = args_string.split(",")
Xingjian Shi's avatar
Xingjian Shi committed
69
    args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
Jason Phang's avatar
gpt3  
Jason Phang committed
70
    return args_dict
Leo Gao's avatar
Leo Gao committed
71

Fabrizio Milo's avatar
Fabrizio Milo committed
72

Leo Gao's avatar
Leo Gao committed
73
74
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
75
        yield from iter
Leo Gao's avatar
Leo Gao committed
76
77


78
def chunks(iter, n=0, fn=None):
Leo Gao's avatar
Leo Gao committed
79
    arr = []
80
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
81
        arr.append(x)
82
        if len(arr) == (fn(i) if fn else n):
Leo Gao's avatar
Leo Gao committed
83
84
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
85
86
87
88

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
89

90
91
92
93
94
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
95

96
97
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
98

gakada's avatar
gakada committed
99
100
101
102
103
104
105
class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
106
107
108
109
110
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.warning("{} is not in task list.".format(value))
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
gakada's avatar
gakada committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
128
129
130
131
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
132
133
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
134
    string = re.sub(r" (['.,])", r"\1", string)
135
136
137
    return string


Jason Phang's avatar
Jason Phang committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
165
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
166
167
168
169
170
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
171

Jason Phang's avatar
Jason Phang committed
172
        yield (
Fabrizio Milo's avatar
Fabrizio Milo committed
173
174
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
175
176
177
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
178

Leo Gao's avatar
Leo Gao committed
179
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
180
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
181
    a, b = pair
182
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
183

Jason Phang's avatar
Jason Phang committed
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
def select_continuation_from_batch_left_padding(
    generations: Union[List[List[int]], torch.Tensor], max_context_size: int
):
    """Select the continuation from the batch, removing prompts of different lengths.
    Args:
        generations (Union[List[List[int]], torch.Tensor]):
            A tensor or list-of-lists of shape [batch_size, sequence length].
        max_context_size (int):
            The size of the biggest context; generations will proceed from that
            index.
    Example:
        PAD     PAD Continue : The dog chased the cat  [every       day of the week]
        Riddle  me    this   : The  dog chased the  cat [yesterday] PAD PAD PAD PAD
    Output:
        [every day of the week]
        [yesterday]  PAD PAD PAD PAD
    """
    return generations[:, max_context_size:]


205
206
207
208
209
class Reorderer:
    def __init__(self, arr, fn):
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
210
211
212
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
213
214
215
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
216

217
218
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
219

220
221
222
223
224
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
225
            for ind in inds:
226
227
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
228

229
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
230

231
232
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
233

234
235
236
237
238
239
def make_table(result_dict):
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
240
    md_writer.headers = ["Task", "Version", "Filter", "Metric", "Value", "", "Stderr"]
lintangsutawika's avatar
lintangsutawika committed
241
242
243
244
245
246
247
248
249
    latex_writer.headers = [
        "Task",
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
250
251
252
253
254

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
255
256
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
257
258
259
            if m.endswith("_stderr"):
                continue

260
261
262
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
263
            else:
264
                values.append([k, version, f, m, "%.4f" % v, "", ""])
265
266
267
268
269
270
271
272
273
274
275
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


276
277
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
278
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
279
280
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
281

282
283
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
284
285
286
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
287
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
288
289
                "lm-evaluation-harness!"
            )
290
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
291

292
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
293

Fabrizio Milo's avatar
Fabrizio Milo committed
294

Stephen Hogg's avatar
Stephen Hogg committed
295
296
297
298
299
300
301
302
303
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
304
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
305
306
307
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
308
309
310
311
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
312
313

@positional_deprecated
314
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
315
316
317
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
318
319
    import pytest

320
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
321
322
323
324
325
326
327
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
328
329
330
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
331
332
333
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
334
335


336
337
338
339
340
341
342
343
344
345
346
347
348
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
        git_hash = git_hash.decode()
    except subprocess.CalledProcessError:
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
349
350
351
352
353
def import_function(loader, node):

    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
354
    module_name, function_name = function_name.split(".")
lintangsutawika's avatar
lintangsutawika committed
355
356
357
358
359
360
361
362
363
    module_path = os.path.join(yaml_path, "{}.py".format(module_name))

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
364

lintangsutawika's avatar
lintangsutawika committed
365
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
366
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
367
368
369


def load_yaml_config(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
370
    with open(yaml_path, "rb") as file:
lintangsutawika's avatar
lintangsutawika committed
371
372
        yaml_config = yaml.full_load(file)
        yaml_dir = os.path.dirname(yaml_path)
lintangsutawika's avatar
lintangsutawika committed
373
374
375
376

        if "include" in yaml_config:
            include_path = yaml_config["include"]
            del yaml_config["include"]
lintangsutawika's avatar
lintangsutawika committed
377
378
379

            if type(include_path) == str:
                include_path = [include_path]
lintangsutawika's avatar
lintangsutawika committed
380

lintangsutawika's avatar
lintangsutawika committed
381
382
383
384
385
386
            # Load from the last one first
            include_path.reverse()
            final_yaml_config = {}
            for path in include_path:

                # Assumes that path is a full path.
lintangsutawika's avatar
lintangsutawika committed
387
                # If not found, assume the included yaml
lintangsutawika's avatar
lintangsutawika committed
388
389
390
391
392
393
394
                # is in the same dir as the original yaml
                if not os.path.isfile(path):
                    path = os.path.join(yaml_dir, path)

                try:
                    included_yaml_config = load_yaml_config(path)
                    final_yaml_config.update(included_yaml_config)
lintangsutawika's avatar
lintangsutawika committed
395
                except Exception as ex:
lintangsutawika's avatar
lintangsutawika committed
396
                    # If failed to load, ignore
lintangsutawika's avatar
lintangsutawika committed
397
                    raise ex
lintangsutawika's avatar
lintangsutawika committed
398
399
400
401
402
403

            final_yaml_config.update(yaml_config)
            return final_yaml_config
        return yaml_config


404
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
405
406
407
408
409


def apply_template(template, doc):
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
410
411


412
413
414
415
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
416
417
418
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
419

haileyschoelkopf's avatar
haileyschoelkopf committed
420
421
422
423
424
425

def pad_and_concat(max_length: int, tensors: List[torch.Tensor], padding_side="right"):
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
426
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
427
428
429
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
430

431
432
433
    for i, tensor in enumerate(tensors):
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
434
435
436
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
437
438
439
440
441
442
443
444
445
446
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
447
448
449
            else:
                # left-pad
                tensors[i] = torch.cat(
450
                    [
451
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
452
                            max_length - tensor_len,
453
454
                            dtype=torch.long,
                            device=tensor.device,
455
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
456
                        tensor,  # [seq]
457
458
459
460
461
462
                    ],
                    dim=0,
                ).unsqueeze(0)
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
463
    return torch.cat(tensors, dim=0)
464

465

466
467
468
def clear_torch_cache():
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
469
470


haileyschoelkopf's avatar
haileyschoelkopf committed
471
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
    ):
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
haileyschoelkopf's avatar
haileyschoelkopf committed
518
    )