seq2seq.py 14.4 KB
Newer Older
Benjamin Fattori's avatar
Benjamin Fattori committed
1
2
3
import torch
import transformers

4
import copy
Benjamin Fattori's avatar
Benjamin Fattori committed
5
6
7
8
9
10
from tqdm import tqdm

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.logger import eval_logger
11
12
from lm_eval.api.registry import register_model
from lm_eval.api.model import LM
Benjamin Fattori's avatar
Benjamin Fattori committed
13

14
15
from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

Benjamin Fattori's avatar
Benjamin Fattori committed
16
17
18
19
20
21
from accelerate import Accelerator


@register_model("hf-seq2seq", "seq2seq")
class Seq2SeqHFLM(LM):
    _DEFAULT_MAX_LENGTH: int = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
22

Benjamin Fattori's avatar
Benjamin Fattori committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    def __init__(
        self,
        device="cuda",
        pretrained="t5-small",
        revision="main",
        low_cpu_mem_usage=None,
        subfolder=None,
        tokenizer=None,
        batch_size=1,
    ):
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)
        gpus = torch.cuda.device_count()
        if gpus <= 1:
            if device:
                if device not in ["cuda", "cpu"]:
                    device = int(device)
                self._device = torch.device(device)
                print(f"Using device '{device}'")
            else:
                print("Device not specified")
                print(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
            self._rank = 0
            self._world_size = 1

        else:
            self._device = "cpu"

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self.model = transformers.AutoModelForSeq2SeqLM.from_pretrained(
            pretrained, revision=revision, low_cpu_mem_usage=low_cpu_mem_usage
        ).to(self.device)
        self.model.eval()

        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
        )

        self.vocab_size = self.tokenizer.vocab_size

        # multithreading and batching
        self.batch_size_per_gpu = batch_size

        if gpus > 1:
78
79
80
81
82
83
84
85
86
87
88
            accelerator = Accelerator()
            if gpus > accelerator.num_processes:
                warning = (
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                print(warning)
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
89
90
91
92
93
94
95
96
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
                self.model.to(self.device)
97
98
99
100
101
102
103
104
105
106
            else:
                self.model = accelerator.prepare(self.model)
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    print(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
Benjamin Fattori's avatar
Benjamin Fattori committed
107
108
109
110
111
112
113
114

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
115
116
        return self._DEFAULT_MAX_LENGTH  # TODO: Is this a good default?

Benjamin Fattori's avatar
Benjamin Fattori committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size
haileyschoelkopf's avatar
haileyschoelkopf committed
136

Benjamin Fattori's avatar
Benjamin Fattori committed
137
138
139
140
141
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=True)

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens, skip_special_tokens=True)
haileyschoelkopf's avatar
haileyschoelkopf committed
142
143

    def _model_call(self, inps, attn_mask=None, labels=None):
Benjamin Fattori's avatar
Benjamin Fattori committed
144
145
146
147
148
149
150
151
152
153
154
        """
        inps: a torch tensor of shape [batch, sequence_ctx]
        the size of sequence may vary from call to call

        labels: a torch tensor of shape [batch, sequence_cont]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model
        """
        with torch.no_grad():
haileyschoelkopf's avatar
haileyschoelkopf committed
155
156
157
158
            return self.model(
                input_ids=inps, attention_mask=attn_mask, labels=labels
            ).logits

159
160
161
162
163
164
    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
Benjamin Fattori's avatar
Benjamin Fattori committed
165
166
167
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self.model).generate(
                context,
                max_new_tokens=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.eot_token_id,
                **generation_kwargs,
            )
        else:
            return self.model.generate(
                context,
                max_new_tokens=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.eot_token_id,
                **generation_kwargs,
haileyschoelkopf's avatar
haileyschoelkopf committed
183
184
            )

Benjamin Fattori's avatar
Benjamin Fattori committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)
haileyschoelkopf's avatar
haileyschoelkopf committed
199

Benjamin Fattori's avatar
Benjamin Fattori committed
200
    def loglikelihood_rolling(self, requests):
201
        loglikelihoods = []
202
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
203
204
205
206
207
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
208
                        prefix_token=self.eot_token_id,
209
210
211
212
213
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
214
215

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder
216
217
218
219
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
220
                # We pad out the external document-level iterator so the inner iterator doesn't hang
221
222
223
224
225
226
227
228
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
229
230

            string_nll = self._loglikelihood_tokens(
231
                rolling_token_windows, disable_tqdm=True
232
233
            )

234
235
236
237
238
            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]
239
240
241
242
243

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
haileyschoelkopf's avatar
haileyschoelkopf committed
244

Benjamin Fattori's avatar
Benjamin Fattori committed
245
246
247
248
249
250
251
252
253
254
255
256
257
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
258

Benjamin Fattori's avatar
Benjamin Fattori committed
259
260
261
262
263
264
265
        re_ord = utils.Reorderer(requests, _collate)
        for chunk in utils.chunks(
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
            self.batch_size,
        ):
            inps = []
            conts = []
266
            encoder_attns = []
Benjamin Fattori's avatar
Benjamin Fattori committed
267
            cont_toks_list = []
haileyschoelkopf's avatar
haileyschoelkopf committed
268

269
270
            max_batch_length_inp = None
            max_batch_length_cont = None
Benjamin Fattori's avatar
Benjamin Fattori committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                inp = torch.tensor(
                    (context_enc)[-self.max_length :],
                    dtype=torch.long,
                ).to(self.device)
                (inplen,) = inp.shape

                cont = torch.tensor(
                    (continuation_enc)[-self.max_length :],
                    dtype=torch.long,
                ).to(self.device)
                (contlen,) = cont.shape

haileyschoelkopf's avatar
haileyschoelkopf committed
290
291
292
293
294
295
296
297
298
299
                max_batch_length_inp = (
                    max(max_batch_length_inp, inplen)
                    if max_batch_length_inp is not None
                    else inplen
                )
                max_batch_length_cont = (
                    max(max_batch_length_cont, contlen)
                    if max_batch_length_cont is not None
                    else contlen
                )
Benjamin Fattori's avatar
Benjamin Fattori committed
300

301
                inps.append(inp)  # [1, inp_len]
haileyschoelkopf's avatar
haileyschoelkopf committed
302
                conts.append(cont)  # [1, cont_len]
303
                encoder_attns.append(torch.ones_like(inp))
Benjamin Fattori's avatar
Benjamin Fattori committed
304
305
306

                cont_toks_list.append(continuation_enc)

haileyschoelkopf's avatar
haileyschoelkopf committed
307
308
309
310
311
312
313
314
315
            batched_inps = utils.pad_and_concat(
                max_batch_length_inp, inps
            )  # [batch, padding_length]
            batched_conts = utils.pad_and_concat(
                max_batch_length_cont, conts
            )  # [batch, padding_length]
            batched_encoder_mask = utils.pad_and_concat(
                max_batch_length_inp, encoder_attns
            )
316
            # need to make attention mask here too
Benjamin Fattori's avatar
Benjamin Fattori committed
317
318

            multi_logits = F.log_softmax(
haileyschoelkopf's avatar
haileyschoelkopf committed
319
320
321
322
                self._model_call(
                    batched_inps, attn_mask=batched_encoder_mask, labels=batched_conts
                ),
                dim=-1,
Benjamin Fattori's avatar
Benjamin Fattori committed
323
324
325
326
327
328
            ).cpu()  # [batch, padding_length, vocab]

            for (cache_key, _, _), logits, cont_toks in zip(
                chunk, multi_logits, cont_toks_list
            ):

haileyschoelkopf's avatar
haileyschoelkopf committed
329
                # Slice to original seq length
Benjamin Fattori's avatar
Benjamin Fattori committed
330
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
331
                logits = logits[:contlen].unsqueeze(0)  # [1, seq, vocab]
Benjamin Fattori's avatar
Benjamin Fattori committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

        return re_ord.get_original(res)
haileyschoelkopf's avatar
haileyschoelkopf committed
351

Benjamin Fattori's avatar
Benjamin Fattori committed
352
353
354
355
356
357
358
359
360
    def greedy_until(self, requests):
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer([req.args for req in requests], _collate)

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        for context, gen_kwargs in tqdm(re_ord.get_reordered()):
            until = None
            if isinstance(gen_kwargs, dict):
                gen_kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                print(gen_kwargs)
                if "until" in gen_kwargs.keys():
                    until = gen_kwargs.pop("until")
                    if isinstance(until, str):
                        until = [gen_kwargs]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `gen_kwargs` to be of type `dict` but got {gen_kwargs}"
                )
            if not until:
                until = [self.tok_decode(self.eot_token_id)]
            if "max_gen_toks" in gen_kwargs.keys():
                max_gen_toks = gen_kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

Benjamin Fattori's avatar
Benjamin Fattori committed
385
386
387
388
389
390
391
            (primary_until) = until[0]

            context_enc = torch.tensor(
                [self.tok_encode(context)[-self.max_length :]]
            ).to(self.device)

            cont = self._model_generate(
haileyschoelkopf's avatar
haileyschoelkopf committed
392
393
                context=context_enc,
                max_length=context_enc.shape[1] + max_gen_toks,
394
395
                stop=primary_until,
                **gen_kwargs,
Benjamin Fattori's avatar
Benjamin Fattori committed
396
397
            )
            s = self.tok_decode(cont[0].tolist())
398
            print(s)
Benjamin Fattori's avatar
Benjamin Fattori committed
399
400
            for term in until:
                s = s.split(term)[0]
401
            print(s)
Benjamin Fattori's avatar
Benjamin Fattori committed
402
403
404
            res.append(s)

        return re_ord.get_original(res)