Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
28500952
Commit
28500952
authored
Jun 07, 2023
by
Benjamin Fattori
Browse files
commit on clean branch
parent
4e9412d5
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
347 additions
and
0 deletions
+347
-0
lm_eval/models/__init__.py
lm_eval/models/__init__.py
+1
-0
lm_eval/models/seq2seq.py
lm_eval/models/seq2seq.py
+346
-0
No files found.
lm_eval/models/__init__.py
View file @
28500952
...
...
@@ -2,5 +2,6 @@ from . import gpt2
from
.
import
gpt3
from
.
import
textsynth
from
.
import
dummy
from
.
import
seq2seq
# TODO: implement __all__
lm_eval/models/seq2seq.py
0 → 100644
View file @
28500952
import
torch
import
transformers
from
tqdm
import
tqdm
import
torch.nn.functional
as
F
from
lm_eval
import
utils
from
lm_eval.logger
import
eval_logger
from
lm_eval.api.model
import
LM
,
register_model
from
accelerate
import
Accelerator
from
typing
import
List
@
register_model
(
"hf-seq2seq"
,
"seq2seq"
)
class
Seq2SeqHFLM
(
LM
):
_DEFAULT_MAX_LENGTH
:
int
=
2048
def
__init__
(
self
,
device
=
"cuda"
,
pretrained
=
"t5-small"
,
revision
=
"main"
,
low_cpu_mem_usage
=
None
,
subfolder
=
None
,
tokenizer
=
None
,
batch_size
=
1
,
):
super
().
__init__
()
assert
isinstance
(
device
,
str
)
assert
isinstance
(
pretrained
,
str
)
assert
isinstance
(
batch_size
,
int
)
gpus
=
torch
.
cuda
.
device_count
()
if
gpus
<=
1
:
if
device
:
if
device
not
in
[
"cuda"
,
"cpu"
]:
device
=
int
(
device
)
self
.
_device
=
torch
.
device
(
device
)
print
(
f
"Using device '
{
device
}
'"
)
else
:
print
(
"Device not specified"
)
print
(
f
"Cuda Available?
{
torch
.
cuda
.
is_available
()
}
"
)
self
.
_device
=
(
torch
.
device
(
"cuda"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"cpu"
)
)
self
.
_rank
=
0
self
.
_world_size
=
1
else
:
self
.
_device
=
"cpu"
# TODO: update this to be less of a hack once subfolder is fixed in HF
revision
=
revision
+
(
"/"
+
subfolder
if
subfolder
is
not
None
else
""
)
self
.
model
=
transformers
.
AutoModelForSeq2SeqLM
.
from_pretrained
(
pretrained
,
revision
=
revision
,
low_cpu_mem_usage
=
low_cpu_mem_usage
).
to
(
self
.
device
)
self
.
model
.
eval
()
self
.
tokenizer
=
transformers
.
AutoTokenizer
.
from_pretrained
(
pretrained
if
tokenizer
is
None
else
tokenizer
,
revision
=
revision
,
)
self
.
vocab_size
=
self
.
tokenizer
.
vocab_size
# multithreading and batching
self
.
batch_size_per_gpu
=
batch_size
if
gpus
>
1
:
raise
NotImplementedError
@
property
def
eot_token_id
(
self
):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return
self
.
tokenizer
.
eos_token_id
@
property
def
max_length
(
self
):
return
self
.
_DEFAULT_MAX_LENGTH
#TODO: Is this a good default?
@
property
def
max_gen_toks
(
self
):
return
256
@
property
def
batch_size
(
self
):
return
self
.
batch_size_per_gpu
@
property
def
device
(
self
):
return
self
.
_device
@
property
def
rank
(
self
):
return
self
.
_rank
@
property
def
world_size
(
self
):
return
self
.
_world_size
def
tok_encode
(
self
,
string
:
str
):
return
self
.
tokenizer
.
encode
(
string
,
add_special_tokens
=
True
)
def
tok_decode
(
self
,
tokens
):
return
self
.
tokenizer
.
decode
(
tokens
,
skip_special_tokens
=
True
)
def
_model_call
(
self
,
inps
,
labels
=
None
):
"""
inps: a torch tensor of shape [batch, sequence_ctx]
the size of sequence may vary from call to call
labels: a torch tensor of shape [batch, sequence_cont]
the size of sequence may vary from call to call
returns: a torch tensor of shape [batch, sequence, vocab] with the
logits returned from the model
"""
with
torch
.
no_grad
():
return
self
.
model
(
input_ids
=
inps
,
labels
=
labels
).
logits
def
_model_generate
(
self
,
context
,
max_length
,
stop
):
stopping_criteria
=
stop_sequences_criteria
(
self
.
tokenizer
,
stop
,
1
,
context
.
shape
[
0
]
)
return
self
.
model
.
generate
(
context
,
max_new_tokens
=
max_length
,
stopping_criteria
=
stopping_criteria
,
do_sample
=
False
,
)
def
loglikelihood
(
self
,
requests
):
new_reqs
=
[]
for
context
,
continuation
in
[
req
.
args
for
req
in
requests
]:
if
context
==
""
:
# end of text as context
context_enc
=
[
self
.
eot_token_id
]
else
:
context_enc
=
self
.
tok_encode
(
context
)
continuation_enc
=
self
.
tok_encode
(
continuation
)
new_reqs
.
append
(((
context
,
continuation
),
context_enc
,
continuation_enc
))
return
self
.
_loglikelihood_tokens
(
new_reqs
)
def
loglikelihood_rolling
(
self
,
requests
):
raise
NotImplementedError
def
_loglikelihood_tokens
(
self
,
requests
,
disable_tqdm
=
False
):
res
=
[]
def
_collate
(
x
):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks
=
x
[
1
]
+
x
[
2
]
return
-
len
(
toks
),
tuple
(
toks
)
re_ord
=
utils
.
Reorderer
(
requests
,
_collate
)
for
chunk
in
utils
.
chunks
(
tqdm
(
re_ord
.
get_reordered
(),
disable
=
(
disable_tqdm
or
(
self
.
rank
!=
0
))),
self
.
batch_size
,
):
inps
=
[]
conts
=
[]
cont_toks_list
=
[]
padding_length_inp
=
None
padding_length_cont
=
None
for
_
,
context_enc
,
continuation_enc
in
chunk
:
# sanity check
assert
len
(
context_enc
)
>
0
assert
len
(
continuation_enc
)
>
0
assert
len
(
continuation_enc
)
<=
self
.
max_length
inp
=
torch
.
tensor
(
(
context_enc
)[
-
self
.
max_length
:],
dtype
=
torch
.
long
,
).
to
(
self
.
device
)
(
inplen
,)
=
inp
.
shape
cont
=
torch
.
tensor
(
(
continuation_enc
)[
-
self
.
max_length
:],
dtype
=
torch
.
long
,
).
to
(
self
.
device
)
(
contlen
,)
=
cont
.
shape
padding_length_inp
=
(
padding_length_inp
if
padding_length_inp
is
not
None
else
inplen
)
padding_length_cont
=
(
padding_length_cont
if
padding_length_cont
is
not
None
else
contlen
)
inp
=
torch
.
cat
(
[
inp
,
# [seq]
torch
.
zeros
(
padding_length_inp
-
inplen
,
dtype
=
torch
.
long
).
to
(
inp
.
device
),
# [padding_length - seq]
],
dim
=
0
,
)
cont
=
torch
.
cat
(
[
cont
,
# [seq]
torch
.
zeros
(
padding_length_cont
-
contlen
,
dtype
=
torch
.
long
).
to
(
cont
.
device
),
# [padding_length - seq]
],
dim
=
0
,
)
inps
.
append
(
inp
.
unsqueeze
(
0
))
# [1, padding_length]
conts
.
append
(
cont
.
unsqueeze
(
0
))
# [1, padding_length]
cont_toks_list
.
append
(
continuation_enc
)
batched_inps
=
torch
.
cat
(
inps
,
dim
=
0
)
# [batch, padding_length]
batched_conts
=
torch
.
cat
(
conts
,
dim
=
0
)
# [batch, padding_length]
multi_logits
=
F
.
log_softmax
(
self
.
_model_call
(
batched_inps
,
labels
=
batched_conts
),
dim
=-
1
).
cpu
()
# [batch, padding_length, vocab]
for
(
cache_key
,
_
,
_
),
logits
,
cont_toks
in
zip
(
chunk
,
multi_logits
,
cont_toks_list
):
# Slice to original seq length
contlen
=
len
(
cont_toks
)
logits
=
logits
[:
contlen
].
unsqueeze
(
0
)
# [1, seq, vocab]
# Check if per-token argmax is exactly equal to continuation
greedy_tokens
=
logits
.
argmax
(
dim
=-
1
)
cont_toks
=
torch
.
tensor
(
cont_toks
,
dtype
=
torch
.
long
).
unsqueeze
(
0
)
# [1, seq]
max_equal
=
(
greedy_tokens
==
cont_toks
).
all
()
# Obtain log-probs at the corresponding continuation token indices
logits
=
torch
.
gather
(
logits
,
2
,
cont_toks
.
unsqueeze
(
-
1
)).
squeeze
(
-
1
)
# [1, seq]
# Answer: (log prob, is-exact-match)
answer
=
(
float
(
logits
.
sum
()),
bool
(
max_equal
))
res
.
append
(
answer
)
return
re_ord
.
get_original
(
res
)
def
greedy_until
(
self
,
requests
):
res
=
[]
def
_collate
(
x
):
toks
=
self
.
tok_encode
(
x
[
0
])
return
len
(
toks
),
x
[
0
]
re_ord
=
utils
.
Reorderer
([
req
.
args
for
req
in
requests
],
_collate
)
for
context
,
until
in
tqdm
(
re_ord
.
get_reordered
()):
if
isinstance
(
until
,
str
):
until
=
[
until
]
(
primary_until
)
=
until
[
0
]
context_enc
=
torch
.
tensor
(
[
self
.
tok_encode
(
context
)[
-
self
.
max_length
:]]
).
to
(
self
.
device
)
cont
=
self
.
_model_generate
(
context_enc
,
context_enc
.
shape
[
1
]
+
self
.
max_gen_toks
,
primary_until
)
s
=
self
.
tok_decode
(
cont
[
0
].
tolist
())
for
term
in
until
:
s
=
s
.
split
(
term
)[
0
]
res
.
append
(
s
)
return
re_ord
.
get_original
(
res
)
class
MultiTokenEOSCriteria
(
transformers
.
StoppingCriteria
):
"""Criteria to stop on the specified multi-token sequence."""
def
__init__
(
self
,
sequence
:
str
,
tokenizer
:
transformers
.
PreTrainedTokenizer
,
initial_decoder_input_length
:
int
,
batch_size
:
int
,
):
self
.
initial_decoder_input_length
=
initial_decoder_input_length
self
.
done_tracker
=
[
False
]
*
batch_size
self
.
sequence
=
sequence
self
.
sequence_ids
=
tokenizer
.
encode
(
sequence
,
add_special_tokens
=
False
)
self
.
sequence_id_len
=
len
(
self
.
sequence_ids
)
self
.
tokenizer
=
tokenizer
def
__call__
(
self
,
input_ids
,
scores
,
**
kwargs
)
->
bool
:
# For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
lookback_ids_batch
=
input_ids
[:,
self
.
initial_decoder_input_length
:][
:,
-
self
.
sequence_id_len
:
]
lookback_tokens_batch
=
self
.
tokenizer
.
batch_decode
(
lookback_ids_batch
)
for
i
,
done
in
enumerate
(
self
.
done_tracker
):
if
not
done
:
self
.
done_tracker
[
i
]
=
self
.
sequence
in
lookback_tokens_batch
[
i
]
return
False
not
in
self
.
done_tracker
def
stop_sequences_criteria
(
tokenizer
:
transformers
.
PreTrainedTokenizer
,
stop_sequences
:
List
[
str
],
initial_decoder_input_length
:
int
,
batch_size
:
int
,
)
->
transformers
.
StoppingCriteriaList
:
return
transformers
.
StoppingCriteriaList
(
[
*
[
MultiTokenEOSCriteria
(
sequence
,
tokenizer
,
initial_decoder_input_length
,
batch_size
)
for
sequence
in
stop_sequences
],
]
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment