seq2seq.py 12.3 KB
Newer Older
Benjamin Fattori's avatar
Benjamin Fattori committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import transformers

from tqdm import tqdm

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.logger import eval_logger
from lm_eval.api.model import LM, register_model

from accelerate import Accelerator
from typing import List


@register_model("hf-seq2seq", "seq2seq")
class Seq2SeqHFLM(LM):
    _DEFAULT_MAX_LENGTH: int = 2048
    def __init__(
        self,
        device="cuda",
        pretrained="t5-small",
        revision="main",
        low_cpu_mem_usage=None,
        subfolder=None,
        tokenizer=None,
        batch_size=1,
    ):
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)
        gpus = torch.cuda.device_count()
        if gpus <= 1:
            if device:
                if device not in ["cuda", "cpu"]:
                    device = int(device)
                self._device = torch.device(device)
                print(f"Using device '{device}'")
            else:
                print("Device not specified")
                print(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
            self._rank = 0
            self._world_size = 1

        else:
            self._device = "cpu"

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self.model = transformers.AutoModelForSeq2SeqLM.from_pretrained(
            pretrained, revision=revision, low_cpu_mem_usage=low_cpu_mem_usage
        ).to(self.device)
        self.model.eval()

        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
        )

        self.vocab_size = self.tokenizer.vocab_size

        # multithreading and batching
        self.batch_size_per_gpu = batch_size

        if gpus > 1:
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
            accelerator = Accelerator()
            if gpus > accelerator.num_processes:
                warning = (
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                print(warning)
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
            else:
                self.model = accelerator.prepare(self.model)
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    print(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
Benjamin Fattori's avatar
Benjamin Fattori committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        return self._DEFAULT_MAX_LENGTH #TODO: Is this a good default?
    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size
    
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=True)

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens, skip_special_tokens=True)
    
    def _model_call(self, inps, labels = None):
        """
        inps: a torch tensor of shape [batch, sequence_ctx]
        the size of sequence may vary from call to call

        labels: a torch tensor of shape [batch, sequence_cont]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model
        """
        with torch.no_grad():
            return self.model(input_ids = inps, labels = labels).logits
        
    def _model_generate(self, context, max_length, stop):
        
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )

        return self.model.generate(
            context,
            max_new_tokens=max_length,
            stopping_criteria=stopping_criteria,
            do_sample=False,

        )
    
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)
    
    def loglikelihood_rolling(self, requests):
        raise NotImplementedError
    
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)
        
        re_ord = utils.Reorderer(requests, _collate)
        for chunk in utils.chunks(
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
            self.batch_size,
        ):
            inps = []
            conts = []
            cont_toks_list = []

            padding_length_inp = None
            padding_length_cont = None

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                inp = torch.tensor(
                    (context_enc)[-self.max_length :],
                    dtype=torch.long,
                ).to(self.device)
                (inplen,) = inp.shape

                cont = torch.tensor(
                    (continuation_enc)[-self.max_length :],
                    dtype=torch.long,
                ).to(self.device)
                (contlen,) = cont.shape

                padding_length_inp = (
                    padding_length_inp if padding_length_inp is not None else inplen
                )

                padding_length_cont = (
                    padding_length_cont if padding_length_cont is not None else contlen
                )

                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length_inp - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )

                cont = torch.cat(
                    [
                        cont,  # [seq]
                        torch.zeros(padding_length_cont - contlen, dtype=torch.long).to(
                            cont.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
        
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                conts.append(cont.unsqueeze(0)) # [1, padding_length]

                cont_toks_list.append(continuation_enc)

            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length]
            batched_conts = torch.cat(conts, dim=0) # [batch, padding_length]

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, labels = batched_conts), dim=-1
            ).cpu()  # [batch, padding_length, vocab]

            for (cache_key, _, _), logits, cont_toks in zip(
                chunk, multi_logits, cont_toks_list
            ):

                # Slice to original seq length 
                contlen = len(cont_toks)
                logits = logits[: contlen].unsqueeze(
                    0
                )  # [1, seq, vocab]

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

        return re_ord.get_original(res)
    
    def greedy_until(self, requests):
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer([req.args for req in requests], _collate)

        for context, until in tqdm(re_ord.get_reordered()):
            if isinstance(until, str):
                until = [until]
            (primary_until) = until[0]

            context_enc = torch.tensor(
                [self.tok_encode(context)[-self.max_length :]]
            ).to(self.device)

            cont = self._model_generate(
                context_enc, context_enc.shape[1] + self.max_gen_toks, primary_until
            )
            s = self.tok_decode(cont[0].tolist())
            for term in until:
                s = s.split(term)[0]

            res.append(s)

        return re_ord.get_original(res)
    


class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
    ):
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )