evaluator.py 19 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import random
Leo Gao's avatar
Leo Gao committed
2
import itertools
FarzanehNakhaee's avatar
FarzanehNakhaee committed
3
import json
lintangsutawika's avatar
lintangsutawika committed
4
import collections
FarzanehNakhaee's avatar
FarzanehNakhaee committed
5
6
import logging
import sys
lintangsutawika's avatar
lintangsutawika committed
7

8
9
import torch

10
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
11
12

import lm_eval.api
13
import lm_eval.tasks
lintangsutawika's avatar
lintangsutawika committed
14
import lm_eval.benchmarks
lintangsutawika's avatar
lintangsutawika committed
15
import lm_eval.models
lintangsutawika's avatar
lintangsutawika committed
16
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
17
import lm_eval.api.registry
lintangsutawika's avatar
lintangsutawika committed
18

lintangsutawika's avatar
lintangsutawika committed
19
20
21
22
from lm_eval.utils import (
    positional_deprecated,
    run_task_tests,
    make_table,
23
    create_iterator,
lintangsutawika's avatar
lintangsutawika committed
24
25
    get_git_commit_hash,
)
26

lintangsutawika's avatar
lintangsutawika committed
27
28
from lm_eval.logger import eval_logger

FarzanehNakhaee's avatar
FarzanehNakhaee committed
29
30
31
32
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stdout))

Fabrizio Milo's avatar
Fabrizio Milo committed
33

34
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
35
36
37
38
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
39
    num_fewshot=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
40
    batch_size=None,
41
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
42
    device=None,
haileyschoelkopf's avatar
haileyschoelkopf committed
43
    use_cache=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
44
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
45
46
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
47
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
48
49
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
50
):
51
    """Instantiate and evaluate a model on a list of tasks.
52

53
54
55
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
56
        String arguments for each model class, see LM.create_from_arg_string.
57
58
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
59
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
60
61
    :param num_fewshot: int
        Number of examples in few-shot context
62
    :param batch_size: int or str, optional
63
        Batch size for model
64
65
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
66
    :param device: str, optional
67
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
68
69
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
70
71
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
72
73
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
74
75
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
76
    :param write_out: bool
77
78
79
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
80
    :return
81
        Dictionary of results
82
    """
83
    random.seed(0)
84
    np.random.seed(1234)
85
86
87
    torch.manual_seed(
        1234
    )  # TODO: this may affect training runs that are run with evaluation mid-run.
88

89
90
91
    assert (
        tasks != []
    ), "No tasks specified, or no tasks found. Please verify the task names."
92
93

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
94
95
        if model_args is None:
            model_args = ""
lintangsutawika's avatar
lintangsutawika committed
96
        lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
lintangsutawika's avatar
lintangsutawika committed
97
98
99
100
101
102
            model_args,
            {
                "batch_size": batch_size,
                "max_batch_size": max_batch_size,
                "device": device,
            },
Fabrizio Milo's avatar
Fabrizio Milo committed
103
        )
104
    else:
105
        assert isinstance(model, lm_eval.api.model.LM)
106
        lm = model
107

haileyschoelkopf's avatar
haileyschoelkopf committed
108
109
110
111
112
113
114
115
116
117
    if use_cache is not None:
        print(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
            + "_rank" + str(lm.rank) + ".db",
        )

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    # def _change_fewshot(task_dict):
    #     for task_name in task_dict.keys():
    #         task_obj = task_dict[task_name]
    #         if type(task_obj) == tuple:
    #             group, task_obj = task_obj
    #                 if task_obj

    #         config = task_obj._config
    #         if num_fewshot is not None:
    #             if config["num_fewshot"] > 0:
    #                 default_num_fewshot = config["num_fewshot"]
    #                 eval_logger.warning(
    #                     f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
    #                 )

    #             task_obj._config["num_fewshot"] = num_fewshot

135
136
    task_dict = lm_eval.tasks.get_task_dict(tasks)
    for task_name in task_dict.keys():
lintangsutawika's avatar
lintangsutawika committed
137
138
139
        task_obj = task_dict[task_name]
        if type(task_obj) == tuple:
            group, task_obj = task_obj
140
141
            if task_obj is None:
                continue
lintangsutawika's avatar
lintangsutawika committed
142
143

        config = task_obj._config
144
145
146
147
148
149
150
        if num_fewshot is not None:
            if config["num_fewshot"] > 0:
                default_num_fewshot = config["num_fewshot"]
                eval_logger.warning(
                    f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
151
            task_obj._config["num_fewshot"] = num_fewshot
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
152

Stephen Hogg's avatar
Stephen Hogg committed
153
    if check_integrity:
154
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
155

156
157
158
159
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
160
        bootstrap_iters=bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
161
        decontamination_ngrams_path=decontamination_ngrams_path,
162
        write_out=write_out,
163
        log_samples=log_samples,
164
    )
165

166
167
168
    if lm.rank == 0:
        # add info about the model and few shot config
        results["config"] = {
lintangsutawika's avatar
lintangsutawika committed
169
170
171
            "model": model
            if isinstance(model, str)
            else model.model.config._name_or_path,
172
173
            "model_args": model_args,
            "batch_size": batch_size,
lintangsutawika's avatar
lintangsutawika committed
174
175
176
            "batch_sizes": list(lm.batch_sizes.values())
            if hasattr(lm, "batch_sizes")
            else [],
177
            "device": device,
haileyschoelkopf's avatar
haileyschoelkopf committed
178
            "use_cache": use_cache,
179
180
181
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
        }
182
        results["git_hash"] = get_git_commit_hash()
183
184
185
        return results
    else:
        return None
186

Leo Gao's avatar
Leo Gao committed
187

188
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
189

Fabrizio Milo's avatar
Fabrizio Milo committed
190

191
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
192
193
194
195
def evaluate(
    lm,
    task_dict,
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
196
    bootstrap_iters: int = 100000,
Fabrizio Milo's avatar
Fabrizio Milo committed
197
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
198
199
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
200
):
201
202
203
204
205
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
206
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
207
208
209
210
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
211
    :param write_out: bool
212
213
214
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
215
216
217
    :return
        Dictionary of results
    """
218

lintangsutawika's avatar
lintangsutawika committed
219
    # decontaminate = decontamination_ngrams_path is not None
220

221
    # stores the final result for each task, for each metric/filter pair.
Leo Gao's avatar
Leo Gao committed
222
    results = collections.defaultdict(dict)
223
    # Tracks each task's version.
Leo Gao's avatar
Leo Gao committed
224
    versions = collections.defaultdict(dict)
225
    # Tracks the YAML configs of all chosen tasks.
226
    configs = collections.defaultdict(dict)
227
    # logs info about each document evaluated.
lintangsutawika's avatar
lintangsutawika committed
228
    samples = collections.defaultdict(list)
229
    # tracks all Instances/requests a model must generate output on.
Leo Gao's avatar
Leo Gao committed
230
    requests = collections.defaultdict(list)
Lintang Sutawika's avatar
Lintang Sutawika committed
231
    # Stores task scores based on task grouping.
232
    results_agg = collections.defaultdict(dict)
233
    # tracks if a task was chosen via user selecting a group containing it
234
235
    task_to_group = collections.defaultdict(dict)
    group_to_task = collections.defaultdict(list)
236
237
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
238
239
    padding_requests = collections.defaultdict(int)

240
    # get lists of each type of request
241
    for task_name, task in task_dict.items():
242
243
        if type(task) == tuple:
            group, task = task
244
245
246
247
248
249
250
251
252
253
254
            task_to_group[task_name] = group

            if group in list(group_to_task.keys()):
                group_to_task[group].append(task_name)
            else:
                group_to_task[group] = [task_name]

            if task is None:
                continue
        else:
            group_to_task[task_name] = []
255

Leo Gao's avatar
Leo Gao committed
256
        versions[task_name] = task.VERSION
haileyschoelkopf's avatar
haileyschoelkopf committed
257
258
        configs[task_name] = dict(task.dump_config())

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
259
        if limit is not None:
260
261
262
263
264
265
            if task.has_test_docs():
                task_docs = task.test_docs()
            elif task.has_validation_docs():
                task_docs = task.validation_docs()
            else:
                raise RuntimeError("Task has neither test_docs nor validation_docs")
266
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
267

268
269
        task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size)

haileyschoelkopf's avatar
haileyschoelkopf committed
270
271
272
273
274
275
276
        eval_logger.info(
            f"Task: {task_name}; number of requests on this rank: {len(task.instances)}"
        )

        if write_out:
            for inst in task.instances:
                # print the prompt for the first few documents
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
277
278
                if inst.doc_id < 1:
                    eval_logger.info(
haileyschoelkopf's avatar
haileyschoelkopf committed
279
280
                        f"Task: {task_name}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
haileyschoelkopf's avatar
haileyschoelkopf committed
281
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
282
                    eval_logger.info(f"Request: {str(inst)}")
haileyschoelkopf's avatar
haileyschoelkopf committed
283

284
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
285
286
        reqtype = (
            "loglikelihood"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
287
            if task.OUTPUT_TYPE == "multiple_choice"
lintangsutawika's avatar
lintangsutawika committed
288
289
290
            else task.OUTPUT_TYPE
        )  # TODO: this is hacky, fix in task.py
        requests[reqtype].extend(task.instances)
291
292

        if lm.world_size > 1:
293
294
295
296
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
297

298
            # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks)
299
            numpad = max(gathered_item) - gathered_item[lm.rank]
300
            padding_requests[task.OUTPUT_TYPE] += numpad
301

302
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
303
304
    # execute each type of request
    for reqtype, reqs in requests.items():
lintangsutawika's avatar
lintangsutawika committed
305
        eval_logger.info("Running {} requests".format(reqtype))
306
307
308
309
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
310

311
312
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
313
314
                cloned_reqs.extend([req] * req.repeats)

315
316
317
318
319
320
321
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

322
323
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
324

325
326
327
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_name, task in task_dict.items():
328
329
        if type(task) == tuple:
            group, task = task
330
331
            if task is None:
                continue
332
333
334
        task.apply_filters()

    ### Collect values of metrics on all datapoints ###
Leo Gao's avatar
Leo Gao committed
335
336
337
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
338
    for task_name, task in task_dict.items():
339
340
        if type(task) == tuple:
            group, task = task
341
342
            if task is None:
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
343
344
        # TODO: make it possible to use a different metric per filter
        # iterate over different filters used
345
        for key in task.instances[0].filtered_resps.keys():
346
347
348
349
            doc_iterator = (
                itertools.islice(
                    enumerate(task.test_docs()), lm.rank, limit, lm.world_size
                )
lintangsutawika's avatar
lintangsutawika committed
350
                if task.has_test_docs()
351
352
353
354
                else itertools.islice(
                    enumerate(task.validation_docs()), lm.rank, limit, lm.world_size
                )
            )
355
            for doc_id, doc in doc_iterator:
356
357
                # subset instances to only this document id ; sort by idx
                requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
358
                requests.sort(key=lambda x: x.idx)
lintangsutawika's avatar
lintangsutawika committed
359
360
361
                metrics = task.process_results(
                    doc, [req.filtered_resps[key] for req in requests]
                )
362
363
364
365
366
367
368
369
370
371
372
373
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
                        "filtered_resps": [req.filtered_resps[key] for req in requests],
                    }
                    example.update(metrics)
                    samples[task_name].append(example)
374
375
376
                for metric, value in metrics.items():
                    vals[(task_name, key, metric)].append(value)

377
    if lm.world_size > 1:
378
        # if multigpu, then gather data across all ranks
379
380
381
382
383
384
385
386
        # first gather logged samples across all ranks
        for task_name, task_samples in list(samples.items()):
            full_samples = [None] * lm.world_size
            torch.distributed.all_gather_object(full_samples, task_samples)

            samples[task_name] = list(itertools.chain.from_iterable(full_samples))

        # then collect metrics across all ranks
387
388
        vals_torch = collections.defaultdict(list)
        for (task_name, key, metric), items in vals.items():
389
            numitem = 0
390
            if type(items[0]) == tuple:
391
392
                numitem = len(items[0])

393
394
395
396
            if isinstance(items[0], (str, list)):
                # handle the string case
                gathered_items = [None] * lm.accelerator.num_processes
                torch.distributed.all_gather_object(gathered_items, items)
397

398
                gathered_item = list(itertools.chain.from_iterable(gathered_items))
399
            else:
400
401
402
403
404
405
406
407
408
409
                # distributed gather requires all ranks to have same dimensions
                # so we pad out with float32 min value
                pad_value = torch.finfo(torch.float32).min
                metrics_tensor = torch.tensor(items, device=lm.device)

                original_dtype = metrics_tensor.dtype  # store original dtype
                torch_device_tensor = lm.accelerator.pad_across_processes(
                    metrics_tensor.to(torch.float32), pad_index=pad_value
                )
                gathered_item = lm.accelerator.gather(torch_device_tensor)
410

411
412
413
414
415
416
417
418
419
420
421
                if numitem > 0:
                    gathered_filtered = gathered_item[gathered_item[:, 0] != pad_value]
                else:
                    gathered_filtered = gathered_item[gathered_item != pad_value]

                gathered_item = (
                    gathered_filtered.to(original_dtype).cpu().detach().numpy().tolist()
                )
                # reconvert if we were passed a tuple of values
                if numitem > 0:
                    gathered_item = [tuple(g) for g in gathered_item]
422

423
424
            if lm.rank == 0:
                vals_torch[(task_name, key, metric)] = gathered_item
425

426
        vals = vals_torch
427

428
429
430
431
432
    if lm.rank == 0:
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for (task_name, key, metric), items in vals.items():
            task = task_dict[task_name]
433
434
            if type(task) == tuple:
                group, task = task
lintangsutawika's avatar
lintangsutawika committed
435
436
437
            task_score = task.aggregation()[metric](items)
            results[task_name][metric + "," + key] = task_score

438
439
            # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
            # so we run them less iterations. still looking for a cleaner way to do this
440
            if False:  # bootstrap_iters > 0:
haileyschoelkopf's avatar
haileyschoelkopf committed
441
442
443
444
445
446
                stderr = lm_eval.api.metrics.stderr_for_metric(
                    metric=task.aggregation()[metric],
                    bootstrap_iters=min(bootstrap_iters, 1000)
                    if metric in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
447

haileyschoelkopf's avatar
haileyschoelkopf committed
448
449
                if stderr is not None:
                    results[task_name][metric + "_stderr" + "," + key] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
        tab_dict = {}
        for group in group_to_task:
            task_list = group_to_task[group]
            if group not in tab_dict:
                tab_dict[group] = 0

            for task in task_list:
                if task in tab_dict:
                    tab_dict[task] += 1
                else:
                    tab_dict[task] = 1 + tab_dict[group]
        print(tab_dict)
        zero_order_groups = [group for group in tab_dict if tab_dict[group] == 0]

        for task_name, task in task_dict.items():
            if type(task) == tuple:
                group_name, _ = task
            else:
                group_name = None

            scores = results[task_name]
            if group_name is not None:
                group_name = tab_dict[group_name] * "-" + group_name
                if group_name not in results_agg:
                    results_agg[group_name] = {}

                for metric in scores:
                    if metric in results_agg[group_name]:
                        results_agg[group_name][metric].append(scores[metric])
                    else:
                        results_agg[group_name][metric] = [scores[metric]]

            tab_task_name = tab_dict[task_name] * "-" + task_name
            results_agg[tab_task_name] = scores
            versions[tab_task_name] = versions[task_name]

        if bool(results_agg):
            for group in results_agg.keys():
                for metric in results_agg[group].keys():
                    results_agg[group][metric] = np.average(results_agg[group][metric])
491
                    versions[group] = "N/A"
lintangsutawika's avatar
lintangsutawika committed
492

493
        results_dict = {
494
            "results": dict(results_agg.items()),
495
            **(
496
497
498
499
500
501
502
503
504
505
                {
                    "groups": dict(
                        [
                            item
                            for item in results_agg.items()
                            if item[0] in zero_order_groups
                        ]
                    )
                }
                if len(zero_order_groups) > 0
506
507
508
509
                else {}
            ),
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
510
        }
511
512
513
514
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
515

516
517
    else:
        return None