utils.py 17.8 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

Ethan Smith's avatar
Ethan Smith committed
13
from typing import Iterator, List, Literal, Union
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

19
from jinja2 import BaseLoader, Environment, StrictUndefined
20
from itertools import islice
sdtblck's avatar
sdtblck committed
21

22
from lm_eval.logger import eval_logger
sdtblck's avatar
sdtblck committed
23
24


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


Jason Phang's avatar
gpt3  
Jason Phang committed
48
49
50
51
52
53
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
54
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
55
56
    if not args_string:
        return {}
57
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
58
    args_dict = {k: v for k, v in [arg.split("=") for arg in arg_list]}
Jason Phang's avatar
gpt3  
Jason Phang committed
59
    return args_dict
Leo Gao's avatar
Leo Gao committed
60

Fabrizio Milo's avatar
Fabrizio Milo committed
61

Leo Gao's avatar
Leo Gao committed
62
63
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
64
        yield from iter
Leo Gao's avatar
Leo Gao committed
65
66


Ethan Smith's avatar
Ethan Smith committed
67
def chunks(iter, n: int = 0, fn=None):
Leo Gao's avatar
Leo Gao committed
68
    arr = []
69
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
70
        arr.append(x)
71
        if len(arr) == (fn(i) if fn else n):
Leo Gao's avatar
Leo Gao committed
72
73
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
74
75
76
77

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
78

79
80
81
82
83
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
84

85
86
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
87

gakada's avatar
gakada committed
88
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
89
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
90
91
92
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
93
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
94
        for value in values.split(","):
95
96
97
98
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
99
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
100
101
        return True

Ethan Smith's avatar
Ethan Smith committed
102
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
103
104
105
106
107
108
109
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
110
111
112
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
113
114
115
116
117
118
119
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
120
121
122
123
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
124
125
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
126
    string = re.sub(r" (['.,])", r"\1", string)
127
128
129
    return string


Jason Phang's avatar
Jason Phang committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
157
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
158
159
160
161
162
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
163

Jason Phang's avatar
Jason Phang committed
164
        yield (
lintangsutawika's avatar
lintangsutawika committed
165
166
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
167
168
169
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
170

Leo Gao's avatar
Leo Gao committed
171
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
172
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
173
    a, b = pair
174
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
175

Jason Phang's avatar
Jason Phang committed
176

177
class Reorderer:
Ethan Smith's avatar
Ethan Smith committed
178
    def __init__(self, arr, fn) -> None:
179
180
181
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
182
183
184
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
185
186
187
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
188

189
190
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
191

192
193
194
195
196
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
197
            for ind in inds:
198
199
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
200

201
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
202

203
204
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
205

haileyschoelkopf's avatar
haileyschoelkopf committed
206
207
208
209
210
211
212
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
213
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
264
def make_table(result_dict, column: str = "results"):
265
266
267
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
268
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
269
270
271
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
272

273
274
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
lintangsutawika's avatar
lintangsutawika committed
275
276
277
278
279
280
281
282
283
    md_writer.headers = [
        column_name,
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
lintangsutawika's avatar
lintangsutawika committed
284
    latex_writer.headers = [
lintangsutawika's avatar
lintangsutawika committed
285
        column_name,
lintangsutawika's avatar
lintangsutawika committed
286
287
288
289
290
291
292
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
293
294
295

    values = []

lintangsutawika's avatar
lintangsutawika committed
296
    for k, dic in result_dict[column].items():
297
        version = result_dict["versions"][k]
298
299
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
300
301
302
            if m.endswith("_stderr"):
                continue

303
304
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
305
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
306
            else:
307
                values.append([k, version, f, m, "%.4f" % v, "", ""])
308
309
310
311
312
313
314
315
316
317
318
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


319
320
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
321
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
322
323
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
324

325
326
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
327
328
329
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
330
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
331
332
                "lm-evaluation-harness!"
            )
333
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
334

335
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
336

Fabrizio Milo's avatar
Fabrizio Milo committed
337

Stephen Hogg's avatar
Stephen Hogg committed
338
339
340
341
342
343
344
345
346
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
347
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
348
349
350
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
351
352
353
354
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
355
356

@positional_deprecated
357
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
358
359
360
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
361
362
    import pytest

363
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
364
365
366
367
368
369
370
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
371
372
373
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
374
375
376
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
377
378


379
380
381
382
383
384
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
385
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
386
        git_hash = git_hash.decode()
387
388
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
389
390
391
392
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
393
394
395
396
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
397
398
399
400
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
401
402
403
404
405
406
407
408

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
409

lintangsutawika's avatar
lintangsutawika committed
410
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
411
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
412
413


414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):

    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
            yaml_dir = os.path.dirname(yaml_path)

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:

            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
451
452


Ethan Smith's avatar
Ethan Smith committed
453
def regex_replace(string, pattern, repl, count: int = 0):
454
455
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
456

lintangsutawika's avatar
lintangsutawika committed
457

458
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
459
env.filters["regex_replace"] = regex_replace
460
461


baberabb's avatar
baberabb committed
462
def apply_template(template: str, doc: dict) -> str:
463
464
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
465
466


467
468
469
470
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
471
472
473
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
474
475


haileyschoelkopf's avatar
haileyschoelkopf committed
476
477
478
479
480
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
481
482
483
484
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
485
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
486
487
488
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
489

lintangsutawika's avatar
lintangsutawika committed
490
    for i, tensor in enumerate(tensors):
491
492
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
493
494
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
495
496
497
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
498
499
500
501
502
503
504
505
506
507
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
508
509
510
511
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
512
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
513
                            max_length - tensor_len,
514
515
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
516
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
517
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
518
519
520
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
521
522
523
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
524
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
525
526


Ethan Smith's avatar
Ethan Smith committed
527
def clear_torch_cache() -> None:
528
529
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
530
531


lintangsutawika's avatar
lintangsutawika committed
532
533
534
535
536
537
538
539
540
541
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
542
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
543
544
545
546
547
548
549
550
551
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
552
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )