metrics.py 7.8 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5

import numpy as np
import sacrebleu
Jonathan Tow's avatar
Jonathan Tow committed
6
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8
9
10
11
12
13


def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
14
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
15
16
17
18
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
19
20
21
22
23
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
24
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
25
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
26
27


&'s avatar
& committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def median(arr):
    return arr[len(arr) // 2]


def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)

47
48
49
50
51
52
53
def macro_f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds, average='macro')

    return fscore
&'s avatar
& committed
54
55
56
57
58
59
60
61

def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
62
        paragraph_id = doc["idx"]["paragraph"]
&'s avatar
& committed
63
        question_id = doc["idx"]["question"]
64
65
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []
&'s avatar
& committed
66
67
68

        gold_label = doc["label"] == 1

69
        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
&'s avatar
& committed
70
71
72
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

73

Leo Gao's avatar
Leo Gao committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
105
106
107
108
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

109

Leo Gao's avatar
Leo Gao committed
110
111
112
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

113
114
115
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
116

&'s avatar
& committed
117
118
119
120
121
122
123
124
125
126
127
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
128
129
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
130
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
131
132
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
133
134
135
136
137
138
139
140
141

def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
142
143
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
144
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
145
146
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
147
148
149
150
151
152
153
154
155
156

def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
157
158
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
159
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
160
161
162
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
163
164
165
166
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
167
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
168
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
169
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
170
171
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
172
173
174
175
176
177
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
178
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
179
        refs = list(refs)
&'s avatar
& committed
180
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
181
        refs = [[ref] for ref in refs]
&'s avatar
& committed
182
183
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
184

&'s avatar
& committed
185
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
186
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
187
        preds = list(preds)
&'s avatar
& committed
188
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
189
190
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
191
192

    return refs, preds
Leo Gao's avatar
Leo Gao committed
193

194
# stderr stuff
Leo Gao's avatar
Leo Gao committed
195

Leo Gao's avatar
Leo Gao committed
196
197
198
199
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
200

Leo Gao's avatar
Leo Gao committed
201
202
203
204
205
206
207
208
209
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
210

211
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
212
213
    import multiprocessing as mp
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
214
215
216
217
218
219
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
    # equivalent to stderr calculated without Bessel's correction in the stddev. 
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
220
    res = []
221
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
222
    from tqdm import tqdm
Leo Gao's avatar
Leo Gao committed
223
    print("bootstrapping for stddev:", f.__name__)
224
225
226
    for bootstrap in tqdm(pool.imap(
            _bootstrap_internal(f, chunk_size),
            [(i, xs) for i in range(iters // chunk_size)]), total=iters // chunk_size):
Leo Gao's avatar
Leo Gao committed
227
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
228
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
229

Leo Gao's avatar
Leo Gao committed
230
    pool.close()
Leo Gao's avatar
Leo Gao committed
231
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
232
233


234
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
235
236
237
238
239
240
241
242
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
kabbi159's avatar
kabbi159 committed
243
        macro_f1_score,
Leo Gao's avatar
Leo Gao committed
244
245
246
    ]

    if metric in bootstrappable:
247
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
248
249
250
251
252
253
254

    stderr = {
        mean: mean_stderr,
        acc_all: acc_all_stderr
        
    }

Leo Gao's avatar
Leo Gao committed
255
    return stderr.get(metric, None)
Jonathan Tow's avatar
Jonathan Tow committed
256
257
258
259
260
261
262


def yesno(x):
    if x:
        return 'yes'
    else:
        return 'no'