task.py 36.5 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
32
33
from lm_eval.api.metrics import (
    # get_metric,
    # get_aggregation,
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
lintangsutawika's avatar
lintangsutawika committed
34
    METRIC_REGISTRY,
35
36
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
37
38
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
39
    DEFAULT_AGGREGATION_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
)
41

42
43
44
45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

49
50
51

@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
    task: str = None
54
    group: Union[str, list] = None
55
56
57
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
58
59
    dataset_path: str = None
    dataset_name: str = None
60
    dataset_kwargs: dict = None
61
62
63
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
65
66
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
67
    template_aliases: str = None
68
69
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
70
    gold_alias: Union[Callable, str] = None
71
    use_prompt: str = None
72
    description: str = ""
73
74
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
75
    # runtime configuration options
76
77
    num_fewshot: int = 0
    batch_size: int = 1
78
    # scoring options
79
80
    metric_list: str = None
    output_type: str = "greedy_until"
81
    generation_kwargs: dict = None
82
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
83
    filter_list: Union[str, list] = None
84
85
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
86

lintangsutawika's avatar
lintangsutawika committed
87
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
88

89
90
91
92
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
93
94
95
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
96

97
98
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
99

100
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
101
                self.gold_alias = self.template_aliases + self.gold_alias
102

haileyschoelkopf's avatar
haileyschoelkopf committed
103
        if self.generation_kwargs:
104
105
106
            assert (
                self.output_type == "greedy_until"
            ), "passed `generation_kwargs`, but not using a generation request type!"
haileyschoelkopf's avatar
haileyschoelkopf committed
107
        elif self.output_type == "greedy_until":
108
109
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
110

haileyschoelkopf's avatar
haileyschoelkopf committed
111
112
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

113
114
115
    def __getitem__(self, item):
        return getattr(self, item)

116
    def to_dict(self):
117
118
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
119
        Used for dumping results alongside full task configuration
120

haileyschoelkopf's avatar
haileyschoelkopf committed
121
122
123
124
125
126
127
128
129
130
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
131
132
133
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        return cfg_dict
135

136
137
138
139
140
141
142
143
144
145
146
147

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
148

149
150
151
152
153
154
155
156
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
192
        self._config = TaskConfig(**config) if config else TaskConfig()
193
194
195

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
196
            for name, components in self._config.get(
197
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
198
            ):
199
200
201
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
202
203
204
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
231
232
233
234
235
236
237
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

275
276
277
278
279
280
281
282
283
284
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
285
            eval_logger.warning(
286
                "has_training_docs and has_validation_docs are False"
287
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
288
            )
289
290
            return self.test_docs()

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

329
    def build_all_requests(self, limit=None, rank=None, world_size=None):
330
331
332
333
334
335
336
337
338
339
340
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
341
342
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
343
        ):
344
            # sample fewshot context #TODO: need to offset doc_id by rank now!
345
346
347
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
348

haileyschoelkopf's avatar
haileyschoelkopf committed
349
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
350
351
352
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
353
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
354
            )
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
380
            The number of times each instance in a dataset is inferred on. Defaults to 1,
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
416
417
418
419
420
421
422
423
424
425
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
446
447
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
448
        else:
lintangsutawika's avatar
lintangsutawika committed
449
450
451
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
452
453
454
455
456
457

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
458
459
460
461
462
463
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
464

465
    def dump_config(self):
466
        """Returns a dictionary representing the task's config.
467
468
469
470
471
472
473
474

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
        # (batch size, num_fewshot)
        return self._config.to_dict()

475
476
477

class ConfigurableTask(Task):

478
    VERSION = "Yaml"
479
    OUTPUT_TYPE = None
480
    CONFIG = None
481
482
483
484

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
485
        # Get pre-configured attributes
486
        self._config = self.CONFIG
487

488
489
        # Use new configurations if there was no preconfiguration
        if self._config is None:
490
            self._config = TaskConfig(**config)
491
492
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
493
            if config is not None:
494
                self._config.__dict__.update(config)
495

496
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
497
498
499
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
500
501

        if self._config.output_type is not None:
502
            assert self._config.output_type in ALL_OUTPUT_TYPES
503
504
            self.OUTPUT_TYPE = self._config.output_type

505
506
507
508
509
510
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

511
512
513
514
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
515

516
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
517
        if self._config.metric_list is None:
518
            # TODO: handle this in TaskConfig.__post_init__ ?
519
520
            for metric_name in _metric_list:
                self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
521
522
523
                self._aggregation_list[metric_name] = DEFAULT_AGGREGATION_REGISTRY[
                    metric_name
                ]
524
525
526
                self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                    metric_name
                ]
527
528
529
530
531
532
533
534
535
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
536
                try:
537
                    self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
538
                except Exception:
539
540
541
542
543
544
545
546
547
548
549
550
551
552
                    eval_logger.warning(
                        f"Metric {metric_name} not found, "
                        "Searching from https://huggingface.co/evaluate-metric"
                    )
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_fn_list[metric_name] = metric_object
                        self._metric_fn_kwargs[metric_name] = kwargs

                    except Exception:
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
lintangsutawika's avatar
lintangsutawika committed
553

554
                if "aggregation" in metric_config:
555
                    agg_name = metric_config["aggregation"]
556
557
558
559
560
561
562
563
                    if type(agg_name) == str:
                        self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[
                            agg_name
                        ]
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
564
                else:
565
566
567

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
                    metric_agg = DEFAULT_AGGREGATION_REGISTRY[metric_name]
568
                    eval_logger.warning(
569
570
571
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
572
                    )
573
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
574

575
576
577
578
579
580
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
581
582
583
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
                        f"higher_is_better={HIGHER_IS_BETTER_REGISTRY[metric_name]}"
584
                    )
585
586
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
lintangsutawika's avatar
lintangsutawika committed
587
                    ]
588

589
        self.download(self._config.dataset_kwargs)
590
591
592
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
593
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
594
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
595
596
597
598
599
600
601
602
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
603
604
605
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
606
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
607
        else:
608
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
609
610

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
611
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
612
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
613
614
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
615
616
617
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
618
619
620
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
621
            )
622

623
624
625
626
627
628
629
630
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

661
    def fewshot_docs(self):
662
        if self._config.fewshot_split is not None:
663
            return self.dataset[self._config.fewshot_split]
664
665
666
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
667
                    f"Task '{self._config.task}': "
668
669
670
671
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
672

673
674
675
676
677
678
679
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

680
681
682
683
684
685
686
687
688
689
690
691
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
692
693
694

        if self.prompt is not None:
            doc_to_text = self.prompt
695
696
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
697

698
699
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
700
        elif callable(doc_to_text):
701
702
703
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
704
        else:
705
            print(type(doc_to_text))
706
            raise TypeError
707
708

    def doc_to_target(self, doc):
709
710
711

        if self.prompt is not None:
            doc_to_target = self.prompt
712
713
714
        else:
            doc_to_target = self._config.doc_to_target

715
716
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
717
        elif callable(doc_to_target):
718
719
720
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
721
722
        else:
            raise TypeError
723

724
    def gold_alias(self, doc):
725
726
727
728
729
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
730
        if self._config.gold_alias is not None:
731
732
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
733
            return self.doc_to_target(doc)
734
735
736
737
738
739
740
741
742
743

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

744
745
    def construct_requests(self, doc, ctx, **kwargs):

746
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
747
            arguments = (ctx, self.doc_to_target(doc))
748
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
749
            arguments = (self.doc_to_target(doc),)
750
        elif self.OUTPUT_TYPE == "multiple_choice":
751
752
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
753
754
755
756
757
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
758
            request_list = [
759
760
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
761
                    doc=doc,
762
                    arguments=(ctx, " {}".format(choice)),
763
                    idx=i,
764
765
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
766
                for i, choice in enumerate(choices)
767
            ]
768
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
769
            if "acc_mutual_info" in self._metric_fn_list.keys():
770
771
772
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
773
                # here mutual info refers to calculating
774
775
776
777
778
779
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
780
                            doc=doc,
781
782
783
784
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
785
                        for i, choice in enumerate(choices)
786
787
788
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
789

790
        elif self.OUTPUT_TYPE == "greedy_until":
791
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
792
793

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
794
795
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
796
797
798

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
799
800
801
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

802
        result_dict = {}
803
        use_metric = list(self._metric_fn_list.keys())
804
805
806
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
807
808
809
810
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
811
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
812
            (loglikelihood,) = results
813
814
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
815
            return {
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
831
            }
832
        elif self.OUTPUT_TYPE == "multiple_choice":
833
834

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
835
836
837
838
839
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

840
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
841
842
843
844
845
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
846
847
            if (
                2 * len(choices) == len(lls)
848
                and "acc_mutual_info" in self._metric_fn_list.keys()
849
850
851
852
853
854
855
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
856

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
857
858
            pred = np.argmax(lls)

859
            acc = 1.0 if np.argmax(lls) == gold else 0.0
860
861
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
862
863

            result_dict = {
864
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
865
866
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
867
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
868
869
            }

870
            if "exact_match" in self._metric_fn_list.keys():
871
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
872
                is_greedy = is_greedy[gold]  # take value for the gold answer
873
874
                result_dict["exact_match"] = int(is_greedy)

875
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
876
877
878
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
879
880
881
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

882
883
884
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
885
                gold = self.gold_alias(doc)
886
887
888
            else:
                gold = self.doc_to_target(doc)

889
890
            for key, result in zip(self._metric_fn_list.keys(), results):
                _dict = self._metric_fn_list[key].compute(
haileyschoelkopf's avatar
haileyschoelkopf committed
891
892
893
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
894
                )
895

lintangsutawika's avatar
lintangsutawika committed
896
                result_dict = {**result_dict, **_dict}
897
        else:
lintangsutawika's avatar
lintangsutawika committed
898
899
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
900
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
901
            )
902
903
904
905
906
907
908

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
909
        return self._higher_is_better
910
911
912
913
914
915
916
917
918
919


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
920
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
921
922
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
923
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
924
                doc=doc,
925
                arguments=(ctx, " {}".format(choice)),
926
                idx=i,
927
928
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
929
930
            for i, choice in enumerate(doc["choices"])
        ]
931
932

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
933
934
935
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
960
class PerplexityTask(Task):
961
962
963
964
965
966
967
968
969
970

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
971
    def fewshot_context(self, doc, num_fewshot, rnd=None):
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1000
1001
1002
1003
1004
1005
1006
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1007
1008
1009

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1010
1011
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))