evaluator.py 21.4 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import random
Leo Gao's avatar
Leo Gao committed
2
import itertools
FarzanehNakhaee's avatar
FarzanehNakhaee committed
3
import json
lintangsutawika's avatar
lintangsutawika committed
4
import collections
FarzanehNakhaee's avatar
FarzanehNakhaee committed
5
6
import logging
import sys
lintangsutawika's avatar
lintangsutawika committed
7

8
9
import torch

10
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
11
12

import lm_eval.api
13
import lm_eval.tasks
lintangsutawika's avatar
lintangsutawika committed
14
import lm_eval.models
lintangsutawika's avatar
lintangsutawika committed
15
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
16
import lm_eval.api.registry
lintangsutawika's avatar
lintangsutawika committed
17

lintangsutawika's avatar
lintangsutawika committed
18
19
20
21
from lm_eval.utils import (
    positional_deprecated,
    run_task_tests,
    make_table,
22
    create_iterator,
lintangsutawika's avatar
lintangsutawika committed
23
24
    get_git_commit_hash,
)
25

lintangsutawika's avatar
lintangsutawika committed
26
27
from lm_eval.logger import eval_logger

FarzanehNakhaee's avatar
FarzanehNakhaee committed
28
29
30
31
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stdout))

Fabrizio Milo's avatar
Fabrizio Milo committed
32

33
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
34
35
36
37
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
38
    num_fewshot=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
39
    batch_size=None,
40
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
41
    device=None,
haileyschoelkopf's avatar
haileyschoelkopf committed
42
    use_cache=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
43
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
44
45
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
46
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
47
48
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
49
):
50
    """Instantiate and evaluate a model on a list of tasks.
51

52
53
54
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
55
        String arguments for each model class, see LM.create_from_arg_string.
56
57
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
58
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
59
60
    :param num_fewshot: int
        Number of examples in few-shot context
61
    :param batch_size: int or str, optional
62
        Batch size for model
63
64
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
65
    :param device: str, optional
66
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
67
68
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
69
70
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
71
72
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
73
74
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
75
    :param write_out: bool
76
77
78
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
79
    :return
80
        Dictionary of results
81
    """
82
    random.seed(0)
83
    np.random.seed(1234)
84
85
86
    torch.manual_seed(
        1234
    )  # TODO: this may affect training runs that are run with evaluation mid-run.
87

88
89
90
    assert (
        tasks != []
    ), "No tasks specified, or no tasks found. Please verify the task names."
91
92

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
93
94
        if model_args is None:
            model_args = ""
lintangsutawika's avatar
lintangsutawika committed
95
        lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
lintangsutawika's avatar
lintangsutawika committed
96
97
98
99
100
101
            model_args,
            {
                "batch_size": batch_size,
                "max_batch_size": max_batch_size,
                "device": device,
            },
Fabrizio Milo's avatar
Fabrizio Milo committed
102
        )
103
    else:
104
        assert isinstance(model, lm_eval.api.model.LM)
105
        lm = model
106

haileyschoelkopf's avatar
haileyschoelkopf committed
107
108
109
110
111
112
113
114
115
116
    if use_cache is not None:
        print(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
            + "_rank" + str(lm.rank) + ".db",
        )

117
118
    task_dict = lm_eval.tasks.get_task_dict(tasks)
    for task_name in task_dict.keys():
lintangsutawika's avatar
lintangsutawika committed
119
120
121
        task_obj = task_dict[task_name]
        if type(task_obj) == tuple:
            group, task_obj = task_obj
122
123
            if task_obj is None:
                continue
lintangsutawika's avatar
lintangsutawika committed
124
125

        config = task_obj._config
126
127
128
129
130
131
132
        if num_fewshot is not None:
            if config["num_fewshot"] > 0:
                default_num_fewshot = config["num_fewshot"]
                eval_logger.warning(
                    f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
133
            task_obj._config["num_fewshot"] = num_fewshot
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
134

Stephen Hogg's avatar
Stephen Hogg committed
135
    if check_integrity:
136
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
137

138
139
140
141
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
142
        bootstrap_iters=bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
143
        decontamination_ngrams_path=decontamination_ngrams_path,
144
        write_out=write_out,
145
        log_samples=log_samples,
146
    )
147

148
149
150
    if lm.rank == 0:
        # add info about the model and few shot config
        results["config"] = {
lintangsutawika's avatar
lintangsutawika committed
151
152
153
            "model": model
            if isinstance(model, str)
            else model.model.config._name_or_path,
154
155
            "model_args": model_args,
            "batch_size": batch_size,
lintangsutawika's avatar
lintangsutawika committed
156
157
158
            "batch_sizes": list(lm.batch_sizes.values())
            if hasattr(lm, "batch_sizes")
            else [],
159
            "device": device,
haileyschoelkopf's avatar
haileyschoelkopf committed
160
            "use_cache": use_cache,
161
162
163
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
        }
164
        results["git_hash"] = get_git_commit_hash()
165
166
167
        return results
    else:
        return None
168

Leo Gao's avatar
Leo Gao committed
169

170
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
171

Fabrizio Milo's avatar
Fabrizio Milo committed
172

173
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
174
175
176
177
def evaluate(
    lm,
    task_dict,
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
178
    bootstrap_iters: int = 100000,
Fabrizio Milo's avatar
Fabrizio Milo committed
179
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
180
181
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
182
):
183
184
185
186
187
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
188
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
189
190
191
192
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
193
    :param write_out: bool
194
195
196
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
197
198
199
    :return
        Dictionary of results
    """
200

lintangsutawika's avatar
lintangsutawika committed
201
    # decontaminate = decontamination_ngrams_path is not None
202

203
    # stores the final result for each task, for each metric/filter pair.
Leo Gao's avatar
Leo Gao committed
204
    results = collections.defaultdict(dict)
205
    # Tracks each task's version.
Leo Gao's avatar
Leo Gao committed
206
    versions = collections.defaultdict(dict)
207
    # Tracks the YAML configs of all chosen tasks.
208
    configs = collections.defaultdict(dict)
209
    # logs info about each document evaluated.
lintangsutawika's avatar
lintangsutawika committed
210
    samples = collections.defaultdict(list)
211
    # tracks all Instances/requests a model must generate output on.
Leo Gao's avatar
Leo Gao committed
212
    requests = collections.defaultdict(list)
213
    # Aggregated task scores presented with groups
214
    results_agg = collections.defaultdict(dict)
215
    # Aggregated groups scores only
lintangsutawika's avatar
lintangsutawika committed
216
    groups_agg = collections.defaultdict(dict)
217
218
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
219
    padding_requests = collections.defaultdict(int)
lintangsutawika's avatar
lintangsutawika committed
220
    # store the hierarchy to do proper ordering
lintangsutawika's avatar
lintangsutawika committed
221
    task_hierarchy = collections.defaultdict(list)
lintangsutawika's avatar
lintangsutawika committed
222
    # store the ordering of tasks and groups
lintangsutawika's avatar
lintangsutawika committed
223
    task_order = collections.defaultdict(int)
224

225
    # get lists of each type of request
226
    for task_name, task in task_dict.items():
227
        if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
228
229
            group_name, task = task
            task_hierarchy[group_name].append(task_name)
230
            versions[group_name] = "N/A"
231
        else:
lintangsutawika's avatar
lintangsutawika committed
232
233
234
235
            task_hierarchy[task_name] = []

        if task is None:
            continue
236

Leo Gao's avatar
Leo Gao committed
237
        versions[task_name] = task.VERSION
haileyschoelkopf's avatar
haileyschoelkopf committed
238
239
        configs[task_name] = dict(task.dump_config())

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
240
        if limit is not None:
241
242
243
244
245
246
            if task.has_test_docs():
                task_docs = task.test_docs()
            elif task.has_validation_docs():
                task_docs = task.validation_docs()
            else:
                raise RuntimeError("Task has neither test_docs nor validation_docs")
247
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
248

249
250
        task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size)

haileyschoelkopf's avatar
haileyschoelkopf committed
251
252
253
254
255
256
257
        eval_logger.info(
            f"Task: {task_name}; number of requests on this rank: {len(task.instances)}"
        )

        if write_out:
            for inst in task.instances:
                # print the prompt for the first few documents
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
258
259
                if inst.doc_id < 1:
                    eval_logger.info(
haileyschoelkopf's avatar
haileyschoelkopf committed
260
261
                        f"Task: {task_name}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
haileyschoelkopf's avatar
haileyschoelkopf committed
262
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
263
                    eval_logger.info(f"Request: {str(inst)}")
haileyschoelkopf's avatar
haileyschoelkopf committed
264

265
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
266
267
        reqtype = (
            "loglikelihood"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
268
            if task.OUTPUT_TYPE == "multiple_choice"
lintangsutawika's avatar
lintangsutawika committed
269
270
271
            else task.OUTPUT_TYPE
        )  # TODO: this is hacky, fix in task.py
        requests[reqtype].extend(task.instances)
272
273

        if lm.world_size > 1:
274
275
276
277
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
278

279
            # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks)
280
            numpad = max(gathered_item) - gathered_item[lm.rank]
281
            padding_requests[task.OUTPUT_TYPE] += numpad
282

283
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
284
285
    # execute each type of request
    for reqtype, reqs in requests.items():
lintangsutawika's avatar
lintangsutawika committed
286
        eval_logger.info("Running {} requests".format(reqtype))
287
288
289
290
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
291

292
293
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
294
295
                cloned_reqs.extend([req] * req.repeats)

296
297
298
299
300
301
302
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

303
304
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
305

306
307
308
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_name, task in task_dict.items():
309
310
        if type(task) == tuple:
            group, task = task
311
312
            if task is None:
                continue
313
314
315
        task.apply_filters()

    ### Collect values of metrics on all datapoints ###
Leo Gao's avatar
Leo Gao committed
316
317
318
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
319
    for task_name, task in task_dict.items():
320
321
        if type(task) == tuple:
            group, task = task
322
323
            if task is None:
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
324
325
        # TODO: make it possible to use a different metric per filter
        # iterate over different filters used
326
        for key in task.instances[0].filtered_resps.keys():
327
328
329
330
            doc_iterator = (
                itertools.islice(
                    enumerate(task.test_docs()), lm.rank, limit, lm.world_size
                )
lintangsutawika's avatar
lintangsutawika committed
331
                if task.has_test_docs()
332
333
334
335
                else itertools.islice(
                    enumerate(task.validation_docs()), lm.rank, limit, lm.world_size
                )
            )
336
            for doc_id, doc in doc_iterator:
337
338
                # subset instances to only this document id ; sort by idx
                requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
339
                requests.sort(key=lambda x: x.idx)
lintangsutawika's avatar
lintangsutawika committed
340
341
342
                metrics = task.process_results(
                    doc, [req.filtered_resps[key] for req in requests]
                )
343
344
345
346
347
348
349
350
351
352
353
354
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
                        "filtered_resps": [req.filtered_resps[key] for req in requests],
                    }
                    example.update(metrics)
                    samples[task_name].append(example)
355
356
357
                for metric, value in metrics.items():
                    vals[(task_name, key, metric)].append(value)

358
    if lm.world_size > 1:
359
        # if multigpu, then gather data across all ranks
360
361
362
363
364
365
366
367
        # first gather logged samples across all ranks
        for task_name, task_samples in list(samples.items()):
            full_samples = [None] * lm.world_size
            torch.distributed.all_gather_object(full_samples, task_samples)

            samples[task_name] = list(itertools.chain.from_iterable(full_samples))

        # then collect metrics across all ranks
368
369
        vals_torch = collections.defaultdict(list)
        for (task_name, key, metric), items in vals.items():
370
            numitem = 0
371
            if type(items[0]) == tuple:
372
373
                numitem = len(items[0])

374
375
376
377
            if isinstance(items[0], (str, list)):
                # handle the string case
                gathered_items = [None] * lm.accelerator.num_processes
                torch.distributed.all_gather_object(gathered_items, items)
378

379
                gathered_item = list(itertools.chain.from_iterable(gathered_items))
380
            else:
381
382
383
384
385
386
387
388
389
390
                # distributed gather requires all ranks to have same dimensions
                # so we pad out with float32 min value
                pad_value = torch.finfo(torch.float32).min
                metrics_tensor = torch.tensor(items, device=lm.device)

                original_dtype = metrics_tensor.dtype  # store original dtype
                torch_device_tensor = lm.accelerator.pad_across_processes(
                    metrics_tensor.to(torch.float32), pad_index=pad_value
                )
                gathered_item = lm.accelerator.gather(torch_device_tensor)
391

392
393
394
395
396
397
398
399
400
401
402
                if numitem > 0:
                    gathered_filtered = gathered_item[gathered_item[:, 0] != pad_value]
                else:
                    gathered_filtered = gathered_item[gathered_item != pad_value]

                gathered_item = (
                    gathered_filtered.to(original_dtype).cpu().detach().numpy().tolist()
                )
                # reconvert if we were passed a tuple of values
                if numitem > 0:
                    gathered_item = [tuple(g) for g in gathered_item]
403

404
405
            if lm.rank == 0:
                vals_torch[(task_name, key, metric)] = gathered_item
406

407
        vals = vals_torch
408

409
    if lm.rank == 0:
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

        ### Get task ordering for correct sample-wide aggregation
        group_to_task = {}
        for group in task_hierarchy.keys():
            if group not in task_order:
                task_order[group] = 0

            if len(task_hierarchy[group]) > 0:
                group_to_task[group] = task_hierarchy[group].copy()

            for task in task_hierarchy[group]:

                if task in task_order:
                    task_order[task] += 1
                else:
                    task_order[task] = 1 + task_order[group]

                if task in task_hierarchy:
                    group_to_task[group].remove(task)
                    group_to_task[group].extend(task_hierarchy[task])

        task_to_group = {}
        for group in group_to_task:
            for task in group_to_task[group]:
                if task in task_to_group:
                    task_to_group[task].append(group)
                else:
                    task_to_group[task] = [group]
lintangsutawika's avatar
lintangsutawika committed
438

439
440
441
442
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for (task_name, key, metric), items in vals.items():
            task = task_dict[task_name]
lintangsutawika's avatar
lintangsutawika committed
443
444
            metric_key = metric + "," + key

445
            if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
446
447
448
449
                group_name, task = task
            else:
                group_name = None

450
            agg_fn = task.aggregation()[metric]
451
452
            results[task_name][metric_key] = agg_fn(items)
            results[task_name]["samples"] = len(items)
lintangsutawika's avatar
lintangsutawika committed
453

454
455
            # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
            # so we run them less iterations. still looking for a cleaner way to do this
haileyschoelkopf's avatar
haileyschoelkopf committed
456
            if bootstrap_iters > 0:
haileyschoelkopf's avatar
haileyschoelkopf committed
457
458
                stderr = lm_eval.api.metrics.stderr_for_metric(
                    metric=task.aggregation()[metric],
haileyschoelkopf's avatar
haileyschoelkopf committed
459
                    bootstrap_iters=min(bootstrap_iters, 100)
haileyschoelkopf's avatar
haileyschoelkopf committed
460
461
462
                    if metric in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
463

haileyschoelkopf's avatar
haileyschoelkopf committed
464
465
                if stderr is not None:
                    results[task_name][metric + "_stderr" + "," + key] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
466

lintangsutawika's avatar
lintangsutawika committed
467
        if bool(results):
468
469

            for group, task_list in reversed(task_hierarchy.items()):
470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
                if task_list == []:
                    total_size = results[group]["samples"]
                else:
                    total_size = 0

                    for task in task_list:
                        metrics = results[task]

                        current_size = metrics.pop("samples")
                        # TODO: There should be a way for users
                        #       to toggle between weighted and
                        #       unweighted averaging
                        # For unweighted averaging, use:
                        #     current_size = 1

                        all_stderr = []
                        for metric in [
                            key for key in metrics.keys() if "_stderr" not in key
                        ]:

                            stderr = "_stderr,".join(metric.split(","))
                            stderr_score = results[task][stderr]
                            metric_score = results[task][metric]

                            all_stderr.append(stderr)

                            if metric in results[group]:
                                results[group][metric] = (
                                    results[group][metric] * total_size
                                    + metric_score * current_size
                                ) / (total_size + current_size)
                                # $$s_z^2 = \frac{(n-1) s_x^2 + (m-1) s_y^2}{n+m-1} + \frac{nm(\bar x - \bar y)^2}{(n+m)(n+m-1)}.$$
                                results[group][stderr] = (
                                    (total_size - 1) * results[group][stderr]
                                    + (current_size - 1) * stderr_score
                                ) / (
                                    total_size + current_size - 1
                                ) + total_size * current_size / (
                                    (total_size + current_size)
                                    * (total_size + current_size - 1)
                                ) * (
                                    results[group][metric] - metric_score
                                ) ** 2
                            else:
                                results[group][metric] = metric_score
                                results[group][stderr] = stderr_score

                        total_size += current_size

                    for stderr in all_stderr:
                        results[group][stderr] = np.sqrt(results[group][stderr])
lintangsutawika's avatar
lintangsutawika committed
522

523
                results[group]["samples"] = total_size
lintangsutawika's avatar
lintangsutawika committed
524

525
526
527
528
529
530
        def print_tasks(task_hierarchy, task_order, task_version):

            results_agg = collections.defaultdict(dict)
            groups_agg = collections.defaultdict(dict)
            for group_name, task_list in task_hierarchy.items():

lintangsutawika's avatar
lintangsutawika committed
531
                order = task_order[group_name]
lintangsutawika's avatar
lintangsutawika committed
532
                tabbed_name = "-" * order + group_name
lintangsutawika's avatar
lintangsutawika committed
533
                results_agg[tabbed_name] = results[group_name]
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
                task_version[tabbed_name] = task_version[group_name]

                if (order < max(task_order.values())) and (len(task_list) > 0):
                    groups_agg[tabbed_name] = results[group_name]

                if task_list != []:
                    for task in sorted(task_list):
                        if task in task_hierarchy:
                            _task_hierarchy = {task: task_hierarchy[task]}
                        else:
                            _task_hierarchy = {task: []}

                        _results_agg, _groups_agg, task_version = print_tasks(
                            _task_hierarchy, task_order, task_version
                        )

                        results_agg = {**results_agg, **_results_agg}
                        groups_agg = {**groups_agg, **_groups_agg}

            return results_agg, groups_agg, task_version

        results_agg, groups_agg, versions = print_tasks(
            task_hierarchy, task_order, versions
        )
lintangsutawika's avatar
lintangsutawika committed
558

559
        results_dict = {
560
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
561
            **({"groups": dict(groups_agg.items())} if bool(groups_agg) else {}),
562
563
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
564
        }
565
566
567
568
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
569

570
571
    else:
        return None