evaluator.py 9.26 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Leo Gao's avatar
Leo Gao committed
3
import random
Leo Gao's avatar
Leo Gao committed
4
import lm_eval.metrics
5
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
import numpy as np
9
from lm_eval.utils import positional_deprecated
10

11

12
@positional_deprecated
13
14
def simple_evaluate(model, model_args, task_names,
                    num_fewshot=0, batch_size=None, device=None,
15
                    no_cache=False, limit=None, bootstrap_iters=100000,
16
                    description_dict=None):
17
    """Instantiate and evaluate a model on a list of tasks.
18
19
20
21
22
23
24
25
26
27
28
29

    :param model: str
        Name of model, see lm_eval.models.get_model
    :param model_args: str
        String arguments for each model class, see LM.create_from_arg_string
    :param task_names: list[str]
        List of task names
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
30
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
31
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
32
        Whether or not to cache
33
34
35
36
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
37
    :param description_dict: dict[str, str]
38
        Dictionary of custom task descriptions of the form: `task_name: description` 
39
    :return
40
        Dictionary of results
41
    """
42
43
44
45
46
47
48
49
    random.seed(1234)
    np.random.seed(1234)

    lm = lm_eval.models.get_model(model).create_from_arg_string(model_args, {
        'batch_size': batch_size, 'device': device
    })

    if not no_cache:
50
51
52
        lm = lm_eval.base.CachingLM(
            lm, 'lm_cache/' + model + '_' + model_args.replace('=', '-').replace(',', '_').replace('/', '-') + '.db'
        )
53
54
    
    task_dict = lm_eval.tasks.get_task_dict(task_names)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
55

56
57
58
59
60
61
62
63
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        provide_description=False,
        num_fewshot=num_fewshot,
        limit=limit,
        description_dict=description_dict
    )
64
65
66
67
68
69
70
71
72
73

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
74
75
        "bootstrap_iters": bootstrap_iters,
        "description_dict": description_dict
76
77
78
    }

    return results
Leo Gao's avatar
Leo Gao committed
79
80


81
@positional_deprecated
82
def evaluate(lm, task_dict, provide_description, num_fewshot, limit, bootstrap_iters=100000, description_dict=None):
83
84
85
86
87
88
89
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
        Dictionary of tasks
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
90
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
91
92
93
94
95
96
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
97
    :param description_dict: dict[str, str]
98
        Dictionary of custom task descriptions of the form: `task_name: description` 
99
100
101
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
102
103
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

104
105
106
107
108
109
110
111
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.

    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
        if(task.has_validation_docs() or task.has_test_docs())
    ]
Leo Gao's avatar
Leo Gao committed
112
113

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
114
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
115
116
117
118

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

119
120
121
122
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
123
124
125
126

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

127
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
128
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
129
        versions[task_name] = task.VERSION
130
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
131
132
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
133
            task_doc_func = task.test_docs
Leo Gao's avatar
Leo Gao committed
134
135
        elif task.has_validation_docs():
            task_doc_func = task.validation_docs
136
137
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
138

Leo Gao's avatar
Leo Gao committed
139
140
141
142
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
143
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
144

145
146
        description = description_dict[task_name] if description_dict and task_name in description_dict else ""

Leo Gao's avatar
Leo Gao committed
147
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
Leo Gao's avatar
Leo Gao committed
148
149
150
151
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
                doc=doc,
                num_fewshot=num_fewshot,
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
152
                provide_description=provide_description,
153
154
                rnd=rnd,
                description=description
Leo Gao's avatar
Leo Gao committed
155
156
            )
            reqs = task.construct_requests(doc, ctx)
157
158
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
159
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
160
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
161
162
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
163
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
164
165
166
167
168
169

    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
170
171
172
173
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
174

Leo Gao's avatar
Leo Gao committed
175
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        resps = getattr(lm, reqtype)([req.args for req in reqs])
        resps = [x if req.index is None else x[req.index] for x, req in zip(resps, reqs)]

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
    
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
    
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
        results[task_name][metric] = task.aggregation()[metric](items)
Leo Gao's avatar
Leo Gao committed
200

201
202
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
203
204
205
206
        stderr = lm_eval.metrics.stderr_for_metric(
            metric=task.aggregation()[metric],
            bootstrap_iters=min(bootstrap_iters, 1000) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters,
        )
Leo Gao's avatar
Leo Gao committed
207
208
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Leo Gao's avatar
Leo Gao committed
209
    
Leo Gao's avatar
Leo Gao committed
210
    return {
211
212
        "results": dict(results),
        "versions": dict(versions)
Leo Gao's avatar
Leo Gao committed
213
    }
214
215
216


def make_table(result_dict):
217
    """Generate table of results."""
218
219
220
221
222
223
224
225
226
227
228
229
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
230
231
            if m.endswith("_stderr"):
                continue
232
233
234
235
236
237
238
239
240
241
242
243
244
245

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
                values.append([k, version, m, '%.4f' % v, '±', '%.4f' % se])
            else:
                values.append([k, version, m, '%.4f' % v, '', ''])
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

246
    return md_writer.dumps()