metrics.py 7.8 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5

import numpy as np
import sacrebleu
Jonathan Tow's avatar
Jonathan Tow committed
6
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8
9
10
11
12
13


def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
14
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
15
16
17
18
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
19
20
21
22
23
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
24
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
25
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
26
27


&'s avatar
& committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def median(arr):
    return arr[len(arr) // 2]


def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)

47
48
49
50
51
52
53
def macro_f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds, average='macro')

    return fscore
&'s avatar
& committed
54
55
56
57
58
59
60
61

def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
62
        paragraph_id = doc["idx"]["paragraph"]
&'s avatar
& committed
63
        question_id = doc["idx"]["question"]
64
65
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []
&'s avatar
& committed
66
67
68

        gold_label = doc["label"] == 1

69
        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
&'s avatar
& committed
70
71
72
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

73

Leo Gao's avatar
Leo Gao committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
105
106
107
108
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

109

Leo Gao's avatar
Leo Gao committed
110
111
112
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

Fabrizio Milo's avatar
Fabrizio Milo committed
113

114
115
116
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
117

&'s avatar
& committed
118
119
120
121
122
123
124
125
126
127
128
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
129
130
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
131
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
132
133
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
134
135
136
137
138
139
140
141
142

def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
143
144
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
145
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
146
147
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
148
149
150
151
152
153
154
155
156
157

def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
158
159
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
160
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
161
162
163
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
164
165
166
167
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
168
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
169
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
170
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
171
172
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
173
174
175
176
177
178
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
179
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
180
        refs = list(refs)
&'s avatar
& committed
181
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
182
        refs = [[ref] for ref in refs]
&'s avatar
& committed
183
184
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
185

&'s avatar
& committed
186
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
187
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
188
        preds = list(preds)
&'s avatar
& committed
189
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
190
191
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
192
193

    return refs, preds
Leo Gao's avatar
Leo Gao committed
194

Fabrizio Milo's avatar
Fabrizio Milo committed
195

196
# stderr stuff
Leo Gao's avatar
Leo Gao committed
197
198
199
200
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
201

Leo Gao's avatar
Leo Gao committed
202
203
204
205
206
207
208
209
210
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
211

212
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
213
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
214

Leo Gao's avatar
Leo Gao committed
215
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
216
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
217
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
218
219
220
221
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
222
    res = []
223
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
224
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
225

Leo Gao's avatar
Leo Gao committed
226
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
227
228
    for bootstrap in tqdm(
        pool.imap(
229
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
230
231
232
233
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
234
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
235
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
236

Leo Gao's avatar
Leo Gao committed
237
    pool.close()
Leo Gao's avatar
Leo Gao committed
238
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
239
240


241
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
242
243
244
245
246
247
248
249
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
kabbi159's avatar
kabbi159 committed
250
        macro_f1_score,
Leo Gao's avatar
Leo Gao committed
251
252
253
    ]

    if metric in bootstrappable:
254
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
255

Fabrizio Milo's avatar
Fabrizio Milo committed
256
    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}
Leo Gao's avatar
Leo Gao committed
257

Leo Gao's avatar
Leo Gao committed
258
    return stderr.get(metric, None)
Jonathan Tow's avatar
Jonathan Tow committed
259
260
261
262


def yesno(x):
    if x:
Fabrizio Milo's avatar
Fabrizio Milo committed
263
        return "yes"
Jonathan Tow's avatar
Jonathan Tow committed
264
    else:
Fabrizio Milo's avatar
Fabrizio Milo committed
265
        return "no"