base.py 32.2 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
thefazzer's avatar
thefazzer committed
3
import numpy as np
4
import random
Leo Gao's avatar
Leo Gao committed
5
import re
6
7
8
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
9
import datasets
10
from sqlitedict import SqliteDict
11
from tqdm import tqdm
12
import torch
Leo Gao's avatar
Leo Gao committed
13
import torch.nn.functional as F
14
15
from accelerate import find_executable_batch_size

&'s avatar
& committed
16

17
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
18
from lm_eval import utils
19
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
20

Jason Phang's avatar
Jason Phang committed
21

Leo Gao's avatar
Leo Gao committed
22
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
23
24
25
    def __init__(self):
        self.cache_hook = CacheHook(None)

26
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
27
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
28
        """Compute log-likelihood of generating a continuation from a context.
Fabrizio Milo's avatar
Fabrizio Milo committed
29
        Downstream tasks should attempt to use loglikelihood instead of other
Leo Gao's avatar
Leo Gao committed
30
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
31

Leo Gao's avatar
Leo Gao committed
32
33
34
        :param requests: list
            A list of pairs (context, continuation)
            context: str
Fabrizio Milo's avatar
Fabrizio Milo committed
35
                Context string. Implementations of LM must be able to handle an
Leo Gao's avatar
Leo Gao committed
36
                empty context string.
Leo Gao's avatar
Leo Gao committed
37
            continuation: str
Fabrizio Milo's avatar
Fabrizio Milo committed
38
39
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
Leo Gao's avatar
Leo Gao committed
40
41
42
43
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
44
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
45
            isgreedy:
Jason Phang's avatar
Jason Phang committed
46
47
48
49
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

50
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
51
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
52
53
54
55
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
Fabrizio Milo's avatar
Fabrizio Milo committed
56
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
Jason Phang's avatar
Jason Phang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
89
90
91
        """
        pass

&'s avatar
& committed
92
    # TODO: Add an optional max length
93
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
94
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
95
96
97
98
99
100
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
101
            until: [str]
Fabrizio Milo's avatar
Fabrizio Milo committed
102
                The string sequences to generate until. These string sequences
Leo Gao's avatar
Leo Gao committed
103
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
104
105
106
107
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
108
        """
Leo Gao's avatar
Leo Gao committed
109
110
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
111
    @classmethod
112
113
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
114
115
116
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
117

Leo Gao's avatar
Leo Gao committed
118
119
120
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
121

122
class BaseLM(LM):
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

148
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
149
150
151
    def tok_encode(self, string: str):
        pass

152
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
153
154
    def tok_decode(self, tokens: Iterable[int]):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
155

156
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
157
158
    def _model_generate(self, context, max_length, eos_token_id):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
159

160
161
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
162
        """
163
164
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
165

166
        returns: a torch tensor of shape [batch, sequence, vocab] with the
167
        logits returned from the model
168
169
        """
        pass
170

Leo Gao's avatar
Leo Gao committed
171
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    # TODO: enforce this somehow

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        
        # automatic batch size detection for vectorization
        adaptive_batch_size = None
        if self.batch_size == 'auto': 
            # using rolling window with maximum context
            print('Passed argument batch_size = auto. Detecting largest batch size')
            @find_executable_batch_size(starting_batch_size=512) # if OOM, then halves batch_size and tries again
            def forward_batch(batch_size):
                test_batch = torch.ones((batch_size, self.max_length), device=self.device).long()
                self._model_call(test_batch) 
                return batch_size
            
            batch_size = forward_batch() 
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
206
207

        loglikelihoods = []
Fabrizio Milo's avatar
Fabrizio Milo committed
208
209
210
211
212
213
214
215
216
217
218
219
        for (string,) in tqdm(requests):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
220
221
222

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

223
224
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
Fabrizio Milo's avatar
Fabrizio Milo committed
225
            string_nll = self._loglikelihood_tokens(
226
                rolling_token_windows, disable_tqdm=True, override_bs = adaptive_batch_size
Fabrizio Milo's avatar
Fabrizio Milo committed
227
228
            )

229
230
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
Fabrizio Milo's avatar
Fabrizio Milo committed
231

232
233
234
235
236
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

237
    def _loglikelihood_tokens(self, requests, disable_tqdm=False, override_bs = None):
238
239
240
241
242
243
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
244
245
246
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
247
248
249
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
250
            return -len(toks), tuple(toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
251

252
        
Fabrizio Milo's avatar
Fabrizio Milo committed
253
        re_ord = utils.Reorderer(requests, _collate)
254
255
256
257

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
        _, context_enc, continuation_enc = re_ord.get_reordered()[0] 
258
        max_context = len((context_enc + continuation_enc)[-(self.max_length + 1) :][:-1])
259
        
260
        if (self.batch_size == 'auto'):
261
            
262
263
264
265
266
267
268
269
270
            if override_bs is None:
                print('Passed argument batch_size = auto. Detecting largest batch size')
                @find_executable_batch_size(starting_batch_size=512) # if OOM, then halves batch_size and tries again
                def forward_batch(batch_size):
                    test_batch = torch.ones((batch_size, max_context), device=self.device).long()
                    self._model_call(test_batch) 
                    return batch_size
                
                batch_size = forward_batch() 
271
                print(f"Determined largest batch size: {batch_size}")
272
273
274
275
                adaptive_batch_size = batch_size

            else:
                adaptive_batch_size = override_bs
276
277
        
        torch.cuda.empty_cache() # empty cache after determining batch size
278

Fabrizio Milo's avatar
Fabrizio Milo committed
279
        for chunk in utils.chunks(
280
            tqdm(re_ord.get_reordered(), disable=disable_tqdm), self.batch_size if self.batch_size != "auto" else adaptive_batch_size
Fabrizio Milo's avatar
Fabrizio Milo committed
281
        ):
282
            inps = []
283
            cont_toks_list = []
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
300
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
301
                # gpt2    \               \
302
303
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
304
305
306

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
Fabrizio Milo's avatar
Fabrizio Milo committed
307
308
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
309
                ).to(self.device)
Fabrizio Milo's avatar
Fabrizio Milo committed
310
                (inplen,) = inp.shape
311
312
313
314

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
Fabrizio Milo's avatar
Fabrizio Milo committed
315
316
317
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )
318

319
                # pad length from seq to padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
320
321
322
323
324
325
326
327
328
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
329

330
331
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
332
333
                inplens.append(inplen)

334
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
335
336
337
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]
338

Fabrizio Milo's avatar
Fabrizio Milo committed
339
340
341
            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):
342

343
344
                # Slice to original seq length
                contlen = len(cont_toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
345
346
347
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]
348

349
                # Check if per-token argmax is exactly equal to continuation
350
                greedy_tokens = logits.argmax(dim=-1)
Fabrizio Milo's avatar
Fabrizio Milo committed
351
352
353
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
354
355
                max_equal = (greedy_tokens == cont_toks).all()

356
357
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
Fabrizio Milo's avatar
Fabrizio Milo committed
358
359
360
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]
361

362
                # Answer: (log prob, is-exact-match)
363
364
365
366
367
368
369
370
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

Fabrizio Milo's avatar
Fabrizio Milo committed
371
        return re_ord.get_original(res)
Fabrizio Milo's avatar
Fabrizio Milo committed
372

373
    def greedy_until(self, requests):
Fabrizio Milo's avatar
Fabrizio Milo committed
374
        # TODO: implement fully general `until` that handles until that are
375
        #       multiple tokens or that span multiple tokens correctly
376
377
378
379
380
381

        # TODO: extract to TokenizedLM?
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
382
            return len(toks), x[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
383

Fabrizio Milo's avatar
Fabrizio Milo committed
384
        re_ord = utils.Reorderer(requests, _collate)
385

Fabrizio Milo's avatar
Fabrizio Milo committed
386
        for context, until in tqdm(re_ord.get_reordered()):
387
388
            if isinstance(until, str):
                until = [until]
389

Fabrizio Milo's avatar
Fabrizio Milo committed
390
            (primary_until,) = self.tok_encode(until[0])
391

Fabrizio Milo's avatar
Fabrizio Milo committed
392
393
394
            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)
395

Fabrizio Milo's avatar
Fabrizio Milo committed
396
397
398
399
400
            cont = self._model_generate(
                context_enc, context_enc.shape[1] + self.max_gen_toks, primary_until
            )

            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])
401
402
403

            for term in until:
                s = s.split(term)[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
404

405
406
            # partial caching
            self.cache_hook.add_partial("greedy_until", (context, until), s)
Fabrizio Milo's avatar
Fabrizio Milo committed
407

408
            res.append(s)
Fabrizio Milo's avatar
Fabrizio Milo committed
409

Fabrizio Milo's avatar
Fabrizio Milo committed
410
        return re_ord.get_original(res)
Leo Gao's avatar
Leo Gao committed
411

Leo Gao's avatar
Leo Gao committed
412

413
class Task(abc.ABC):
&'s avatar
&amp; committed
414
415
416
417
418
419
420
421
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
422

Jon Tow's avatar
Jon Tow committed
423
424
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Jonathan Tow's avatar
Jonathan Tow committed
425
426
427
428
429
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

Jon Tow's avatar
Jon Tow committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
454
        self._training_docs = None
455
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
456

Jon Tow's avatar
Jon Tow committed
457
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
Fabrizio Milo's avatar
Fabrizio Milo committed
458
        """Downloads and returns the task dataset.
Jonathan Tow's avatar
Jonathan Tow committed
459
460
        Override this method to download the dataset from a custom API.

Jon Tow's avatar
Jon Tow committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
Jonathan Tow's avatar
Jonathan Tow committed
481
482
483
484
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
Jon Tow's avatar
Jon Tow committed
485
486
            data_dir=data_dir,
            cache_dir=cache_dir,
Fabrizio Milo's avatar
Fabrizio Milo committed
487
            download_mode=download_mode,
Jonathan Tow's avatar
Jonathan Tow committed
488
        )
sdtblck's avatar
sdtblck committed
489

490
491
492
493
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return False

494
    @abstractmethod
495
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
496
        """Whether the task has a training set"""
497
        pass
498

499
    @abstractmethod
500
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
501
502
503
        """Whether the task has a validation set"""
        pass

504
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
505
506
    def has_test_docs(self):
        """Whether the task has a test set"""
507
508
        pass

Leo Gao's avatar
Leo Gao committed
509
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
510
511
512
513
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
514
        return []
515

Leo Gao's avatar
Leo Gao committed
516
    def validation_docs(self):
517
518
519
520
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
521
        return []
522

Leo Gao's avatar
Leo Gao committed
523
    def test_docs(self):
524
525
526
527
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
528
        return []
Leo Gao's avatar
Leo Gao committed
529

Jon Tow's avatar
Jon Tow committed
530
531
532
533
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
Jon Tow's avatar
Jon Tow committed
534
        E.g. `map(self._process_doc, self.dataset["validation"])`
Jon Tow's avatar
Jon Tow committed
535
536
537
538
539
540

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

541
    def fewshot_examples(self, k, rnd):
542
543
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
544

Leo Gao's avatar
Leo Gao committed
545
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
546

547
    def doc_to_decontamination_query(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
548
549
550
551
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False
552

553
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
554
555
556
    def doc_to_text(self, doc):
        pass

557
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
558
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
559
        pass
Leo Gao's avatar
Leo Gao committed
560

561
    @abstractmethod
562
    def construct_requests(self, doc, ctx):
Fabrizio Milo's avatar
Fabrizio Milo committed
563
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
564
565
        Requests which will be sent to the LM.

566
567
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
568
        :param ctx: str
Fabrizio Milo's avatar
Fabrizio Milo committed
569
            The context string, generated by fewshot_context. This includes the natural
570
            language description, as well as the few shot examples, and the question
Fabrizio Milo's avatar
Fabrizio Milo committed
571
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
572
        """
Leo Gao's avatar
Leo Gao committed
573
        pass
574

575
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
576
    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
577
578
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
579
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
580
581
582
583
584

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
585
        """
Leo Gao's avatar
Leo Gao committed
586
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
587

588
    @abstractmethod
589
590
    def aggregation(self):
        """
&'s avatar
&amp; committed
591
        :returns: {str: [metric_score] -> float}
Fabrizio Milo's avatar
Fabrizio Milo committed
592
            A dictionary where keys are the names of submetrics and values are
&'s avatar
&amp; committed
593
            functions that aggregate a list of metric scores
594
595
596
        """
        pass

597
    @abstractmethod
598
599
600
    def higher_is_better(self):
        """
        :returns: {str: bool}
Fabrizio Milo's avatar
Fabrizio Milo committed
601
            A dictionary where keys are the names of submetrics and values are
602
603
604
605
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
606
    def fewshot_description(self):
607
        import warnings
Fabrizio Milo's avatar
Fabrizio Milo committed
608

609
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
610
            "`fewshot_description` will be removed in futures versions. Pass "
611
            "any custom descriptions to the `evaluate` function instead.",
Fabrizio Milo's avatar
Fabrizio Milo committed
612
613
            DeprecationWarning,
        )
Jason Phang's avatar
checkin  
Jason Phang committed
614
615
        return ""

616
    @utils.positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
617
618
619
620
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        """Returns a fewshot context string that is made up of a prepended description
621
622
623
624
625
626
627
628
629
630
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
631
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
632
633
634
635
636
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
Fabrizio Milo's avatar
Fabrizio Milo committed
637
638
639
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
640
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
641
            "The `provide_description` arg will be removed in future versions. To prepend "
642
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
643
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
644
        )
645
646
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
647
648
649
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
650

651
        description = description + "\n\n" if description else ""
652

653
654
        if num_fewshot == 0:
            labeled_examples = ""
655
        else:
656
657
658
659
660
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
661
                    self._fewshot_docs = list(
Fabrizio Milo's avatar
Fabrizio Milo committed
662
663
664
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
665
                    )
666

667
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
668

669
670
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
671

Fabrizio Milo's avatar
Fabrizio Milo committed
672
673
674
675
676
677
678
679
680
            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )
Leo Gao's avatar
Update  
Leo Gao committed
681

682
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
683
684
685
        return description + labeled_examples + example


Jon Tow's avatar
Jon Tow committed
686
class MultipleChoiceTask(Task):
Leo Gao's avatar
Leo Gao committed
687
    def doc_to_target(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
688
        return " " + doc["choices"][doc["gold"]]
Leo Gao's avatar
Leo Gao committed
689

Leo Gao's avatar
Leo Gao committed
690
691
    def construct_requests(self, doc, ctx):
        lls = [
Fabrizio Milo's avatar
Fabrizio Milo committed
692
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
Leo Gao's avatar
Leo Gao committed
693
694
695
696
697
698
699
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

Fabrizio Milo's avatar
Fabrizio Milo committed
700
        acc = 1.0 if np.argmax(results) == gold else 0.0
701
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
Fabrizio Milo's avatar
Fabrizio Milo committed
702
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
Leo Gao's avatar
Leo Gao committed
703
704

        return {
Leo Gao's avatar
Leo Gao committed
705
706
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
707
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
708

Leo Gao's avatar
Leo Gao committed
709
710
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
711
712
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
713
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
714

Leo Gao's avatar
Leo Gao committed
715
716
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
717
718
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
719
720
721
        }


Jason Phang's avatar
Jason Phang committed
722
class PerplexityTask(Task, abc.ABC):
723
724
725
726
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return True

Jason Phang's avatar
Jason Phang committed
727
728
729
730
731
732
733
    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

Fabrizio Milo's avatar
Fabrizio Milo committed
734
735
736
737
738
739
740
741
742
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
743
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
744
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
745
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
746
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
747
        )
748
749
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
750
751
752
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
753

Jason Phang's avatar
Jason Phang committed
754
755
756
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
757
758
759
760
761
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
762

763
764
765
    def doc_to_decontamination_query(self, doc):
        return doc

Jason Phang's avatar
Jason Phang committed
766
    def doc_to_text(self, doc):
767
        return ""
Jason Phang's avatar
Jason Phang committed
768
769

    def doc_to_target(self, doc):
770
        return doc
Jason Phang's avatar
Jason Phang committed
771
772
773

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
774
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
775
776
777
        return req

    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
778
        (loglikelihood,) = results
Leo Gao's avatar
Leo Gao committed
779
        words = self.count_words(doc)
780
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
781
        return {
Leo Gao's avatar
Leo Gao committed
782
            "word_perplexity": (loglikelihood, words),
783
            "byte_perplexity": (loglikelihood, bytes_),
784
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
785
786
787
788
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
789
790
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
791
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
792
793
        }

794
795
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
796
        return len(doc.encode("utf-8"))
797
798
799

    @classmethod
    def count_words(cls, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
800
        """Downstream tasks with custom word boundaries should override this!"""
Leo Gao's avatar
Leo Gao committed
801
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
802

Jason Phang's avatar
Jason Phang committed
803

Leo Gao's avatar
Leo Gao committed
804
805
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
Fabrizio Milo's avatar
Fabrizio Milo committed
806
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()
Leo Gao's avatar
Leo Gao committed
807
808


Leo Gao's avatar
Leo Gao committed
809
810
class CacheHook:
    def __init__(self, cachinglm):
Fabrizio Milo's avatar
Fabrizio Milo committed
811
        if cachinglm is None:
Leo Gao's avatar
Leo Gao committed
812
813
814
815
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
Fabrizio Milo's avatar
Fabrizio Milo committed
816

Leo Gao's avatar
Leo Gao committed
817
818
819
820
821
822
823
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
824
825
class CachingLM:
    def __init__(self, lm, cache_db):
826
827
828
829
830
831
832
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
833
834
        self.lm = lm
        self.cache_db = cache_db
835
836
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
837
838
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
839
840
841
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
842
843
844
845
    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
Fabrizio Milo's avatar
Fabrizio Milo committed
846

Leo Gao's avatar
Leo Gao committed
847
848
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
849
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
850
851
852
853
854
855
856
857
858
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
Fabrizio Milo's avatar
Fabrizio Milo committed
859

860
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
861
862
863
864
865
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
866
867
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
868
869
870
871

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
872
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
873
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
874
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
875
876

            return res
Fabrizio Milo's avatar
Fabrizio Milo committed
877

Leo Gao's avatar
Leo Gao committed
878
        return fn
Fabrizio Milo's avatar
Fabrizio Milo committed
879

Leo Gao's avatar
Leo Gao committed
880
881
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
882

Jason Phang's avatar
Jason Phang committed
883

884
REQUEST_RETURN_LENGTHS = {
Fabrizio Milo's avatar
Fabrizio Milo committed
885
886
887
    "loglikelihood": 2,
    "greedy_until": None,
    "loglikelihood_rolling": None,
888
889
890
}


891
class Request:
Leo Gao's avatar
Leo Gao committed
892
893
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
Fabrizio Milo's avatar
Fabrizio Milo committed
894
895
896
            raise NotImplementedError(
                "The request type {} is not implemented!".format(request_type)
            )
Leo Gao's avatar
Leo Gao committed
897

Leo Gao's avatar
Leo Gao committed
898
        self.request_type = request_type
899
900
        self.args = args
        self.index = index
Fabrizio Milo's avatar
Fabrizio Milo committed
901

902
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
903
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
904
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
905
906
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
907

908
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
909
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
910
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
911
        return Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
912

Leo Gao's avatar
Leo Gao committed
913
    def __eq__(self, other):
Fabrizio Milo's avatar
Fabrizio Milo committed
914
915
916
917
918
        return (
            self.request_type == other.request_type
            and self.args == other.args
            and self.index == other.index
        )
Leo Gao's avatar
Leo Gao committed
919

Leo Gao's avatar
Leo Gao committed
920
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
921
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
922

Jason Phang's avatar
Jason Phang committed
923

Leo Gao's avatar
Leo Gao committed
924
925
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
926
927
        def fn(*args):
            return Request(attr, args)
Fabrizio Milo's avatar
Fabrizio Milo committed
928

Leo Gao's avatar
Leo Gao committed
929
930
931
932
        return fn


rf = RequestFactory()