huggingface.py 60.4 KB
Newer Older
1
import copy
2
import os
Jeevan's avatar
Jeevan committed
3
from datetime import timedelta
4
from pathlib import Path
KonradSzafer's avatar
KonradSzafer committed
5
from typing import Dict, List, Literal, Optional, Tuple, Union
6

7
import jinja2
8
import torch
9
import torch.nn.functional as F
10
import transformers
Jeevan's avatar
Jeevan committed
11
12
13
14
15
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
16
from accelerate.utils import get_max_memory
17
from huggingface_hub import HfApi
18
19
20
21
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
22
23
24
25
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
26
27

from lm_eval import utils
baberabb's avatar
baberabb committed
28
from lm_eval.api.instance import Instance
29
from lm_eval.api.model import TemplateLM
30
from lm_eval.api.registry import register_model
31
32
33
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
34
    configure_pad_token,
35
    get_dtype,
36
    handle_stop_sequences,
37
38
39
    pad_and_concat,
    stop_sequences_criteria,
)
40

41

42
eval_logger = utils.eval_logger
43

lintangsutawika's avatar
lintangsutawika committed
44

45
@register_model("hf-auto", "hf", "huggingface")
46
class HFLM(TemplateLM):
47
48
49
50
51
52
53
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

54
    AUTO_MODEL_CLASS = None
55
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
56

57
58
    def __init__(
        self,
59
        pretrained: Union[str, transformers.PreTrainedModel],
60
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
61
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
62
63
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
64
65
66
67
68
69
70
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
71
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
72
        logits_cache: bool = True,
73
74
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
75
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
76
77
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
78
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
79
        use_fast_tokenizer: Optional[bool] = True,
80
        add_bos_token: Optional[bool] = False,
81
        prefix_token_id: Optional[int] = None,
82
        # arguments used for splitting a model across GPUs naively.
83
84
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
85
86
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
87
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
88
        # PEFT, delta weights and quantization options
89
        peft: Optional[str] = None,
90
        delta: Optional[str] = None,
91
        autogptq: Optional[Union[bool, str]] = False,
92
        gptqmodel: Optional[bool] = False,
93
        gguf_file: Optional[str] = None,
94
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
95
    ) -> None:
96
        super().__init__()
97
98
99
100
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
101
            )
Baber Abbasi's avatar
Baber Abbasi committed
102
103
104
            assert not parallelize, (
                "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
            )
105
106
107
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
108
            gpus = 0
109

110
        else:
111
112
113
114
115
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
116
117
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
118
119
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
120

121
122
123
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
124
            # using one process with no model parallelism
125
126
127
128
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
129
                    + [f"cuda:{i}" for i in range(gpus)]
130
                    + ["mps", "mps:0"]
131
                    + [f"npu:{i}" for i in range(gpus)]
132
                )
133
                if device and device in device_list:
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
150
            else:  # Parallelism managed by accelerate
151
152
153
154
155
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
156
157
158
159
160
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
161

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
162
            revision = str(revision)  # cast to string if not already one
163
164
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
165

166
            self._get_config(
167
168
169
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
170
                gguf_file=gguf_file,
171
172
            )

173
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
174
175
176
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
177

178
179
180
181
182
183
184
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
185
            gguf_file=gguf_file,
186
187
        )

188
189
190
191
192
193
194
195
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
196
                gpus=gpus,
197
198
199
200
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
201
                delta=delta,
202
                autogptq=autogptq,
203
                gptqmodel=gptqmodel,
204
                gguf_file=gguf_file,
205
                **kwargs,
206
207
            )

208
        # access self._model through self.model property outside this method
209
210
211
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
212

lintangsutawika's avatar
lintangsutawika committed
213
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
214
        self.logits_cache = logits_cache
215
        self.vocab_size = self.tokenizer.vocab_size
216
        # select (or create) a pad token to use
217
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
218

219
        self.add_bos_token = add_bos_token
220
        if "gemma" in getattr(self.config, "model_type", ""):
221
            self.add_bos_token = True
222
            eval_logger.info(
223
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
224
225
            )

226
        self._max_length = max_length
227
228
229
230
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
231
232
233
234
235
236
237
238
239
240
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
241

242
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
243
244
245
246
247
248
249
250
251
252
253
254
            if gpus >= 1 or str(self.device) == "mps":
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
255
256
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
257
258
259
260
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
261
                        )
Nathan Habib's avatar
Nathan Habib committed
262
                    elif gpus > accelerator.num_processes:
263
264
265
266
267
268
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
269
270
271
272
273
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

274
                    self._device = torch.device(f"{accelerator.device}")
275
                    self.accelerator = accelerator
276

277
278
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
279
280
281
282
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
283
284
285
286
287
288
289
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
290

291
        self.custom_prefix_token_id = prefix_token_id
292
293
294
295
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
296

Nathan Habib's avatar
Nathan Habib committed
297
298
    def _get_accelerate_args(
        self,
299
        parallelize: Optional[bool] = None,
Nathan Habib's avatar
Nathan Habib committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                if not hasattr(self, "accelerator"):
                    max_memory_per_gpu_map = {
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
346
                        k: v for k, v in max_memory_all_gpus.items()
Nathan Habib's avatar
Nathan Habib committed
347
                    }
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
348
                else:
Nathan Habib's avatar
Nathan Habib committed
349
350
351
352
353
354
355
356
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
            args["max_memory"] = max_memory_per_gpu_map
357
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
358
            eval_logger.info(
359
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

385
386
387
388
389
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

390
391
392
393
394
395
396
397
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

398
399
400
401
402
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

403
404
405
406
407
408
409
410
411
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

412
413
    @property
    def max_length(self):
414
415
416
417
418
419
420
421
422
423
424
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
425

426
    @property
Ethan Smith's avatar
Ethan Smith committed
427
    def max_gen_toks(self) -> int:
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
446
447
448
449
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

450
451
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
452
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
453
        backend: Literal["default", "causal", "seq2seq"] = "default",
454
455
456
457
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
458
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
459
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
460
461
462

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
463
        """
464

465
466
467
468
469
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
470
                self.backend = backend
471
            elif backend == "seq2seq":
472
                self.backend = backend
473
            eval_logger.info(
474
                f"Overrode HF model backend type, and using type '{self.backend}'"
475
476
477
478
479
480
481
482
483
484
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
485
                self.backend = "seq2seq"
486
                eval_logger.debug(f"Using model type '{self.backend}'")
487
488
489
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
490
                self.backend = "causal"
491
                eval_logger.debug(f"Using model type '{self.backend}'")
492
493
494
495
496
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
497
                        "Setting backend to causal"
498
499
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
500
501
502
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
503
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
504
                )
505

506
507
508
509
510
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
511
512
513
514
515
516

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
517
        gguf_file: Optional[str] = None,
518
    ) -> None:
519
        """Return the model config for HuggingFace models"""
520
521
522
523
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
524
            gguf_file=gguf_file,
525
526
527
528
529
530
531
532
533
534
535
536
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
537
        gpus: Optional[int] = None,
538
539
540
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
541
        # PEFT, delta weights and quantization options
542
        peft: Optional[str] = None,
543
        delta: Optional[str] = None,
544
        autogptq: Optional[Union[bool, str]] = False,
545
        gptqmodel: Optional[bool] = False,
546
        gguf_file: Optional[str] = None,
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
563
564
565
566
567
568
569
570
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
571
            )
Nathan Habib's avatar
Nathan Habib committed
572
        )
573

574
        if not autogptq and not gptqmodel:
575
            if model_kwargs.get("load_in_4bit", None):
Baber Abbasi's avatar
Baber Abbasi committed
576
577
578
                assert transformers.__version__ >= "4.30.0", (
                    "load_in_4bit requires transformers >= 4.30.0"
                )
579
580
581
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
582
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
583
584
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
585

586
587
588
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
589
                torch_dtype=get_dtype(dtype),
590
                trust_remote_code=trust_remote_code,
591
                gguf_file=gguf_file,
592
593
594
                **model_kwargs,
            )
        else:
595
596
597
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
598
599
                )

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                    )

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
                    )

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
631

632
633
634
635
636
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

637
638
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
639
640
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
641
642
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
643
644
645
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
646
                self._model.resize_token_embeddings(len(self.tokenizer))
647
648
649
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
689
        gguf_file: Optional[str] = None,
690
691
692
693
694
695
696
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """
697
698
699
700
701
702
703
704
705
706
        kwargs = {
            "revision": revision,
            "trust_remote_code": trust_remote_code,
        }

        # gguf format embeds tokenizer and is not compatible with hf tokenizer `use_fast` param
        if gguf_file is not None:
            kwargs["gguf_file"] = gguf_file
        else:
            kwargs["use_fast"] = use_fast_tokenizer
707
708
709
710

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
711
                    tokenizer, **kwargs
712
713
714
715
716
717
718
719
720
721
722
723
724
725
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
726
                model_name, **kwargs
727
728
729
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
730
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
731
732
733
734
735
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
736
737
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
738
739
        else:
            max_length = self.max_length
740
741
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
742

Benjamin Fattori's avatar
Benjamin Fattori committed
743
744
745
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
746
            if self.backend == "seq2seq":
747
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
748
749
750
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
751
752
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
753
754
755
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
756
757
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
758
759
760
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
761
            for _ in range(5):
762
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
763

Benjamin Fattori's avatar
Benjamin Fattori committed
764
765
            return batch_size

766
767
768
769
770
771
772
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
773

774
775
776
777
778
779
780
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
781
            clear_torch_cache()
782
783
            return batch_size

784
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
785
786
        return batch_size

baberabb's avatar
baberabb committed
787
788
789
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
790
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
791
792
793
794
795
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
796
        if add_special_tokens is None:
797
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
798
799
800
801
802
803
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
804

Lintang Sutawika's avatar
Lintang Sutawika committed
805
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
806

807
808
809
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
810

811
812
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
813
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
814
815
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
816
        padding_side: str = "left",
817
818
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
819
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
820
821
822
823
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
824
        add_special_tokens = {}
825
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
826
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
827
828
829

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
830
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
831
832
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
833
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
834
835
        )
        if left_truncate_len:
836
837
838
839
840
841
            original_lengths = encoding["input_ids"].size(1)
            if original_lengths > left_truncate_len:
                eval_logger.warn(
                    f"Left truncation applied. Original sequence length was {original_lengths}, "
                    f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
842
843
844
845
846
847
848
849
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
850
851
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
852
853
854

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
855
        :param inps: torch.Tensor
856
857
858
859
860
861
862
863
864
865
866
867
868
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
869
870
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
871
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
872
873
874
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
875
876
877
878
879
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
880
        # temperature = 0.0 if not set
881
882
883
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
884
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
885
        do_sample = generation_kwargs.get("do_sample", None)
886
887
888
889
890

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
891
892
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
893
894
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
895
            self.tokenizer, stop, context.shape[1], context.shape[0]
896
        )
897
        return self.model.generate(
898
            input_ids=context,
899
900
            max_length=max_length,
            stopping_criteria=stopping_criteria,
901
            pad_token_id=self.tokenizer.pad_token_id,
902
903
904
            use_cache=True,
            **generation_kwargs,
        )
905

Baber Abbasi's avatar
Baber Abbasi committed
906
907
908
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
909
        if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
910
911
912
            assert contlen and inplen, (
                "Must pass input len and cont. len to select scored logits for causal LM"
            )
913
914
915
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
916
        elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
917
918
919
            assert contlen and not inplen, (
                "Selecting scored logits for Seq2SeqLM requires only cont. len"
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
920
            # only discard right-padding.
921
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
922
923
            logits = logits[:contlen]

924
925
        return logits

926
927
928
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
Benjamin Fattori's avatar
Benjamin Fattori committed
929
930
931
932
933
934
935
936
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

937
938
939
940
941
942
943
944
945
        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
946
        ):
947
            rolling_token_windows: List[Tuple[List[int], List[int]]] = list(
948
949
950
951
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
952
                        prefix_token=self.prefix_token_id,
953
954
955
956
957
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
958
959

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
960
            windows = [(None,) + x for x in rolling_token_windows]
961

962
963
964
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
965

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
        # Handle distributed case padding
        pad_amnt = 0
        if self.world_size > 1:
            mytensor = torch.tensor(len(all_windows), device=self.device)
            gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
            pad_amnt = max(gathered) - gathered[self.rank]
            if pad_amnt > 0:
                all_windows += pad_amnt * [all_windows[0]]

        all_nlls = []
        batch_size = adaptive_batch_size or self.batch_size
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
                override_bs=len(batch_windows),
986
            )
987
988
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
989

990
991
992
        # Remove padding if necessary
        if (self.world_size > 1) and (pad_amnt > 0):
            all_nlls = all_nlls[:-pad_amnt]
993

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
1009

1010
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1025
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1026
1027
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1028

Ethan Smith's avatar
Ethan Smith committed
1029
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1030
1031
1032
1033
1034
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
1035
1036
1037
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1038
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
1039
            """Defines the key for the sorted method"""
1040
1041
1042
1043
1044
1045
1046
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1047
            toks = req[1] + req[2]
1048
1049
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1050
1051
1052
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1053
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1054
1055
1056
1057
1058
1059
1060
1061
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1062
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1063
1064
1065
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1066
1067
1068

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1069
1070
1071
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1072
1073
1074
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1075
1076
1077
1078
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1079
1080
1081
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1082
            else None
1083
1084
        )

Baber Abbasi's avatar
Baber Abbasi committed
1085
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1086
1087
1088
1089
1090
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1091
        for chunk in chunks:
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1111
                # how this all works (illustrated on a causal decoder-only setup):
1112
1113
1114
1115
1116
1117
1118
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1119
                if self.backend == "causal":
1120
1121
1122
1123
1124
1125
1126
                    total_length = len(context_enc) + len(continuation_enc)
                    if total_length > self.max_length + 1:
                        eval_logger.warn(
                            f"Combined length of context ({len(context_enc)}) and continuation ({len(continuation_enc)}) "
                            f"exceeds model's maximum length ({self.max_length}). "
                            f"Truncating {total_length - self.max_length + 1} tokens from the left."
                        )
1127
1128
1129
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1130
1131
                        device=self.device,
                    )
1132
                    (inplen,) = inp.shape
1133
                elif self.backend == "seq2seq":
1134
1135
1136
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1137
                        device=self.device,
1138
                    )
1139
                    (inplen,) = inp.shape
1140
1141
1142
1143

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1144
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1145
                        (continuation_enc)[-self.max_length :],
1146
1147
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1148
                        dtype=torch.long,
1149
1150
                        device=self.device,
                    )
1151
1152
                    (contlen,) = cont.shape

1153
1154
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1155
1156
1157
1158
1159
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1160

haileyschoelkopf's avatar
haileyschoelkopf committed
1161
1162
1163
1164
1165
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1166
1167
1168
1169

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1170

1171
1172
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1173
            if self.backend == "causal":
1174
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1175
1176
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1177
            elif self.backend == "seq2seq":
1178
                # TODO: left-pad encoder inps and mask?
1179
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1180
1181
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1182
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1183
1184
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1185
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1186
1187
1188
1189
1190
1191
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1192
1193
1194

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
1195
            )  # [batch, padding_length (inp or cont), vocab]
1196

Baber Abbasi's avatar
Baber Abbasi committed
1197
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1198
1199
1200
1201
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1202
                # take only logits in the continuation
1203
                # (discard context toks if decoder-only ; discard right-padding)
1204
1205
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1206
                ctx_len = (
1207
                    inplen + (logits.shape[0] - padding_len_inp)
1208
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1209
1210
                    else None
                )
1211
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1212
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1213
1214
1215
1216

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
                    max_equal = (greedy_tokens == cont_toks).all()

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1244
1245
1246
1247
1248
1249
1250
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1251
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1252
1253

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1254

1255
1256
        return re_ord.get_original(res)

1257
1258
1259
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1260
        res = []
1261

Baber Abbasi's avatar
Baber Abbasi committed
1262
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1263
            """Defines the key for the sorted method"""
1264
1265
1266
1267
1268
1269
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1270
1271
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1272

1273
1274
        pbar = tqdm(
            total=len(requests),
1275
            disable=(disable_tqdm or (self.rank != 0)),
1276
1277
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1278
        adaptive_batch_size = None
1279
1280
1281
1282
1283
1284
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1285
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1298

Baber Abbasi's avatar
Baber Abbasi committed
1299
1300
1301
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1302
1303
1304
1305
1306
1307
1308
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1309
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
1310
        eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1311
1312
1313
1314
1315
1316
1317
1318
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
1319
1320
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
Baber Abbasi's avatar
Baber Abbasi committed
1321
1322
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1323
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1324
                )
Baber Abbasi's avatar
Baber Abbasi committed
1325
1326
1327
1328
1329
1330
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1331
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1332
1333
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1334
1335
1336
                assert max_ctx_len > 0, (
                    f"Invalid configuration: requested max tokens to generate ({max_gen_toks}) must be less than model's maximum sequence length ({self.max_length})."
                )
1337
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1349

Baber Abbasi's avatar
Baber Abbasi committed
1350
1351
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1352

Baber Abbasi's avatar
Baber Abbasi committed
1353
1354
1355
1356
1357
1358
1359
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1360

Baber Abbasi's avatar
Baber Abbasi committed
1361
1362
1363
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1364
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1365
                    cont_toks = cont_toks[context_enc.shape[1] :]
1366

Baber Abbasi's avatar
Baber Abbasi committed
1367
                s = self.tok_decode(cont_toks)
1368

Baber Abbasi's avatar
Baber Abbasi committed
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1382

1383
        pbar.close()
1384

Baber Abbasi's avatar
Baber Abbasi committed
1385
        return res
1386

Baber Abbasi's avatar
Baber Abbasi committed
1387
1388
1389
    def apply_chat_template(
        self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
    ) -> str:
KonradSzafer's avatar
KonradSzafer committed
1390
1391
1392
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
1393
1394
        try:
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1395
1396
1397
1398
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1399
1400
1401
1402
1403
1404
1405
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1406
1407
1408
1409
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1410
1411
1412
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1413

1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1438
                eval_logger.debug(
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info