evaluator.py 25.4 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
haileyschoelkopf's avatar
haileyschoelkopf committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
21
    get_subtask_list,
22
    get_task_list,
23
    prepare_print_tasks,
24
25
26
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
29
30
31
32
from lm_eval.tasks import (
    TaskManager,
    get_task_dict,
)
33
34
35
36
37
38
39
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
40

Fabrizio Milo's avatar
Fabrizio Milo committed
41

42
43
if TYPE_CHECKING:
    from lm_eval.api.model import LM
haileyschoelkopf's avatar
haileyschoelkopf committed
44
    from lm_eval.api.task import Task
45
46


47
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
48
49
def simple_evaluate(
    model,
50
51
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
52
53
54
55
56
    num_fewshot: Optional[int] = None,
    batch_size: Optional[int] = None,
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
57
58
59
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
60
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
61
62
63
64
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
65
66
67
68
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
    apply_chat_template: bool = False,
    fewshot_as_multiturn: bool = False,
69
70
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
71
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
72
    predict_only: bool = False,
73
74
75
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
76
    fewshot_random_seed: int = 1234,
Fabrizio Milo's avatar
Fabrizio Milo committed
77
):
78
    """Instantiate and evaluate a model on a list of tasks.
79

80
81
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
82
83
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
84
        Ignored if `model` argument is a LM object.
85
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
86
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
87
88
    :param num_fewshot: int
        Number of examples in few-shot context
89
    :param batch_size: int or str, optional
90
        Batch size for model
91
92
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
93
    :param device: str, optional
94
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
95
96
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
97
98
99
100
101
102
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
103
104
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
105
    :param bootstrap_iters:
106
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
107
108
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
109
    :param write_out: bool
110
111
112
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
113
114
115
116
117
118
    :param system_instruction: str
        System instruction to be applied to the prompt
    :param apply_chat_template: bool
        If True, apply chat template to the prompt
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
119
120
121
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
122
123
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
124
125
126
127
128
129
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
130
131
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
132

133
    :return
134
        Dictionary of results
135
    """
136
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
137
    start_date = time.time()
138

139
140
141
142
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

143
    seed_message = []
144
145
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
146
        seed_message.append(f"Setting random seed to {random_seed}")
147
148
149
        random.seed(random_seed)

    if numpy_random_seed is not None:
150
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
151
152
153
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
154
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
155
156
        torch.manual_seed(torch_random_seed)

157
158
159
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

160
161
    if tasks is None:
        tasks = []
162
163
164
165
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
166

lintangsutawika's avatar
lintangsutawika committed
167
168
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
169
        eval_logger.warning(
170
171
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
172
        )
lintangsutawika's avatar
lintangsutawika committed
173
174
175
        if gen_kwargs == "":
            gen_kwargs = None

176
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
177
        if model_args is None:
178
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
179
            model_args = ""
180

181
        if isinstance(model_args, dict):
182
183
184
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
185
186
187
188
189
190
191
192
193
194
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
195
196
197
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
198
199
200
201
202
203
204
205
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
206
    else:
207
208
        if not isinstance(model, lm_eval.api.model.LM):
            raise TypeError
209
        eval_logger.info("Using pre-initialized model")
210
        lm = model
211

haileyschoelkopf's avatar
haileyschoelkopf committed
212
    if use_cache is not None:
213
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
214
215
216
217
218
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
219
220
221
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
222
223
        )

224
225
226
227
    if task_manager is None:
        task_manager = TaskManager(verbosity)

    task_dict = get_task_dict(tasks, task_manager)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
228

haileyschoelkopf's avatar
haileyschoelkopf committed
229
230
231
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
232
233
234
235
236
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
haileyschoelkopf's avatar
haileyschoelkopf committed
237
                    **{task_name: _adjust_config(task_obj)},
238
                }
Stephen Hogg's avatar
Stephen Hogg committed
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
            else:
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
268
269
270
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
271
                        task_obj.set_config(key="num_fewshot", value=0)
272
273
274
275
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)
                eval_logger.info(
                    f"Setting fewshot random generator seed to {fewshot_random_seed}"
Baber Abbasi's avatar
Baber Abbasi committed
276
                )
277

278
279
280
281
                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

haileyschoelkopf's avatar
haileyschoelkopf committed
282
    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
283

Stephen Hogg's avatar
Stephen Hogg committed
284
    if check_integrity:
285
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
286

KonradSzafer's avatar
KonradSzafer committed
287
288
289
290
291
292
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
            chat_template=lm.chat_template if apply_chat_template else None,
293
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
294
295
        )

296
297
298
299
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
300
301
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
302
        bootstrap_iters=bootstrap_iters,
303
        write_out=write_out,
304
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
305
306
307
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
308
        verbosity=verbosity,
309
    )
310

311
    if lm.rank == 0:
312
313
314
315
316
317
318
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

319
320
        # add info about the model and few shot config
        results["config"] = {
321
            "model": model_name,
322
323
            "model_args": model_args,
        }
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
339
340
341
342
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
343
344
            }
        )
345
        results["git_hash"] = get_git_commit_hash()
346
        results["date"] = start_date
347
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
348
        add_tokenizer_info(results, lm)  # additional info about tokenizer
349
350
351
        return results
    else:
        return None
352

Leo Gao's avatar
Leo Gao committed
353

354
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
355
def evaluate(
356
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
357
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
358
    limit: Optional[int] = None,
359
360
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
361
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
362
363
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
364
365
366
    system_instruction: Optional[str] = None,
    apply_chat_template: bool = False,
    fewshot_as_multiturn: bool = False,
367
    verbosity: str = "INFO",
Fabrizio Milo's avatar
Fabrizio Milo committed
368
):
369
370
371
372
373
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
374
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
375
376
377
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
378
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
379
    :param write_out: bool
380
381
382
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
383
384
385
386
387
388
    :param system_instruction: str
        System instruction to be applied to the prompt
    :param apply_chat_template: bool
        If True, apply chat template to the prompt
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
389
390
391
    :return
        Dictionary of results
    """
392

393
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
394

395
    # tracks all Instances/requests a model must generate output on.
396
    requests = defaultdict(list)
397
398
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
399
    padding_requests = defaultdict(int)
400

401
    # get lists of group hierarchy and each type of request
402
    eval_tasks = get_task_list(task_dict)
403
    if not log_samples:
404
        if not all(
405
406
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
407
408
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
409
410
411
    for task_output in eval_tasks:
        task: Task = task_output.task
        limit = get_sample_size(task, limit)
412
413
414
415
416
417
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
418
419
420
            system_instruction=system_instruction,
            apply_chat_template=apply_chat_template,
            fewshot_as_multiturn=fewshot_as_multiturn,
421
422
423
424
425
426
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
427
        )
428
        eval_logger.debug(
429
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
430
431
        )
        if write_out:
432
            print_writeout(task)
433
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
434
435
436
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
437
438

        if lm.world_size > 1:
439
440
441
442
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
443
444
445
446
447
448
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
449
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
450
            numpad = max(gathered_item) - gathered_item[lm.rank]
451
452
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
453

454
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
455
456
    # execute each type of request
    for reqtype, reqs in requests.items():
457
        eval_logger.info(f"Running {reqtype} requests")
458
459
460
461
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
462

463
464
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
465
466
                cloned_reqs.extend([req] * req.repeats)

467
468
469
470
471
472
473
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

474
475
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
476

477
478
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
479
480
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
481
482
    for task_output in eval_tasks:
        task = task_output.task
483
484
        task.apply_filters()

485
486
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
487
        # TODO: make it possible to use a different metric per filter
488
        # Pre-process task.instances to group by doc_id
489
        instances_by_doc_id = defaultdict(list)
490
491
492
493
494
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
495
        # iterate over different filters used
496
497
498
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
499
            )
500
            for doc_id, doc in doc_iterator:
501
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
502
                metrics = task.process_results(
503
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
504
                )
505
506
507
508
509
510
511
512
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
513
514
515
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
516
517
518
519
520
521
522
523
524
525
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
526
527
                    }
                    example.update(metrics)
528
                    task_output.logged_samples.append(example)
529
                for metric, value in metrics.items():
530
                    task_output.sample_metrics[(metric, filter_key)].append(value)
531

532
533
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
534
        # first gather logged samples across all ranks
535
536
537
538
539
540
541
542
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
543
                )
544

545
546
547
548
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
549

550
551
552
553
554
555
556
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
557
                )
558
559
560
561
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
562

563
    if RANK == 0:
564
565
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
566
567
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
568
569
570
571
572
573
574
575
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
576

577
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
578
        if bool(results):
haileyschoelkopf's avatar
haileyschoelkopf committed
579
            results, versions, show_group_table, *_ = consolidate_group_results(
lintangsutawika's avatar
lintangsutawika committed
580
                results, versions, task_dict
581
582
            )

583
        results_agg, group_agg = prepare_print_tasks(task_dict, results)
584
585
        subtask_list = get_subtask_list(task_dict)

586
587
588
589
590
591
592
593
594
        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            for task in task_list:
                for m, h in higher_is_better[task].items():
                    if m not in _higher_is_better.keys():
                        _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
595
596
597
598
599
600
601
602
603
604

                    if (
                        m in _higher_is_better
                        and _higher_is_better[m] is not None
                        and _higher_is_better[m] != h
                    ):
                        eval_logger.warning(
                            f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                        )
                        _higher_is_better[m] = None
605
            higher_is_better[group] = _higher_is_better
606

607
        results_dict = {
608
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
609
610
611
612
613
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
614
            "group_subtasks": dict(reversed(subtask_list.items())),
615
616
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
617
            "n-shot": dict(sorted(num_fewshot.items())),
618
            "higher_is_better": dict(sorted(higher_is_better.items())),
619
620
621
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
622
623
624
625
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
626
627
628
                }
                for task_output in eval_tasks
            },
629
        }
630
631
632
633
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
634

635
636
    else:
        return None
637
638
639
640


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
641
642
643
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
644
645
646
    }

    return request_caching_args