utils.py 16.2 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

13
14
from typing import List, Union

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

Xingjian Shi's avatar
Xingjian Shi committed
19
from omegaconf import OmegaConf
20
from jinja2 import BaseLoader, Environment, StrictUndefined
21
from itertools import islice
sdtblck's avatar
sdtblck committed
22

23
from lm_eval.logger import eval_logger
sdtblck's avatar
sdtblck committed
24
25


26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


Jason Phang's avatar
gpt3  
Jason Phang committed
49
50
51
52
53
54
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
55
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
56
57
58
    if not args_string:
        return {}
    arg_list = args_string.split(",")
Xingjian Shi's avatar
Xingjian Shi committed
59
    args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
Jason Phang's avatar
gpt3  
Jason Phang committed
60
    return args_dict
Leo Gao's avatar
Leo Gao committed
61

Fabrizio Milo's avatar
Fabrizio Milo committed
62

Leo Gao's avatar
Leo Gao committed
63
64
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
65
        yield from iter
Leo Gao's avatar
Leo Gao committed
66
67


68
def chunks(iter, n=0, fn=None):
Leo Gao's avatar
Leo Gao committed
69
    arr = []
70
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
71
        arr.append(x)
72
        if len(arr) == (fn(i) if fn else n):
Leo Gao's avatar
Leo Gao committed
73
74
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
75
76
77
78

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
79

80
81
82
83
84
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
85

86
87
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
88

gakada's avatar
gakada committed
89
90
91
92
93
94
95
class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
96
97
98
99
100
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.warning("{} is not in task list.".format(value))
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
gakada's avatar
gakada committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
118
119
120
121
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
122
123
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
124
    string = re.sub(r" (['.,])", r"\1", string)
125
126
127
    return string


Jason Phang's avatar
Jason Phang committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
155
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
156
157
158
159
160
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
161

Jason Phang's avatar
Jason Phang committed
162
        yield (
lintangsutawika's avatar
lintangsutawika committed
163
164
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
165
166
167
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
168

Leo Gao's avatar
Leo Gao committed
169
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
170
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
171
    a, b = pair
172
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
173

Jason Phang's avatar
Jason Phang committed
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def select_continuation_from_batch_left_padding(
    generations: Union[List[List[int]], torch.Tensor], max_context_size: int
):
    """Select the continuation from the batch, removing prompts of different lengths.
    Args:
        generations (Union[List[List[int]], torch.Tensor]):
            A tensor or list-of-lists of shape [batch_size, sequence length].
        max_context_size (int):
            The size of the biggest context; generations will proceed from that
            index.
    Example:
        PAD     PAD Continue : The dog chased the cat  [every       day of the week]
        Riddle  me    this   : The  dog chased the  cat [yesterday] PAD PAD PAD PAD
    Output:
        [every day of the week]
        [yesterday]  PAD PAD PAD PAD
    """
    return generations[:, max_context_size:]


195
196
197
198
199
class Reorderer:
    def __init__(self, arr, fn):
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
200
201
202
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
203
204
205
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
206

207
208
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
209

210
211
212
213
214
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
215
            for ind in inds:
216
217
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
218

219
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
220

221
222
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
223

224
225
226
227
228
229
def make_table(result_dict):
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
230
    md_writer.headers = ["Task", "Version", "Filter", "Metric", "Value", "", "Stderr"]
lintangsutawika's avatar
lintangsutawika committed
231
232
233
234
235
236
237
238
239
    latex_writer.headers = [
        "Task",
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
240
241
242
243
244

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
245
246
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
247
248
249
            if m.endswith("_stderr"):
                continue

250
251
252
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
253
            else:
254
                values.append([k, version, f, m, "%.4f" % v, "", ""])
255
256
257
258
259
260
261
262
263
264
265
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


266
267
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
268
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
269
270
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
271

272
273
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
274
275
276
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
277
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
278
279
                "lm-evaluation-harness!"
            )
280
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
281

282
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
283

Fabrizio Milo's avatar
Fabrizio Milo committed
284

Stephen Hogg's avatar
Stephen Hogg committed
285
286
287
288
289
290
291
292
293
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
294
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
295
296
297
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
298
299
300
301
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
302
303

@positional_deprecated
304
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
305
306
307
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
308
309
    import pytest

310
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
311
312
313
314
315
316
317
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
318
319
320
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
321
322
323
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
324
325


326
327
328
329
330
331
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
332
        git_hash = subprocess.check_output(["gt", "describe", "--always"]).strip()
333
        git_hash = git_hash.decode()
334
335
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
336
337
338
339
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
340
341
342
343
344
def import_function(loader, node):

    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
345
    module_name, function_name = function_name.split(".")
lintangsutawika's avatar
lintangsutawika committed
346
347
348
349
350
351
352
353
354
    module_path = os.path.join(yaml_path, "{}.py".format(module_name))

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
355

lintangsutawika's avatar
lintangsutawika committed
356
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
357
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
358
359
360


def load_yaml_config(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
361
    with open(yaml_path, "rb") as file:
lintangsutawika's avatar
lintangsutawika committed
362
363
        yaml_config = yaml.full_load(file)
        yaml_dir = os.path.dirname(yaml_path)
lintangsutawika's avatar
lintangsutawika committed
364
365
366
367

        if "include" in yaml_config:
            include_path = yaml_config["include"]
            del yaml_config["include"]
lintangsutawika's avatar
lintangsutawika committed
368
369
370

            if type(include_path) == str:
                include_path = [include_path]
lintangsutawika's avatar
lintangsutawika committed
371

lintangsutawika's avatar
lintangsutawika committed
372
373
374
375
376
377
            # Load from the last one first
            include_path.reverse()
            final_yaml_config = {}
            for path in include_path:

                # Assumes that path is a full path.
lintangsutawika's avatar
lintangsutawika committed
378
                # If not found, assume the included yaml
lintangsutawika's avatar
lintangsutawika committed
379
380
381
382
383
384
385
                # is in the same dir as the original yaml
                if not os.path.isfile(path):
                    path = os.path.join(yaml_dir, path)

                try:
                    included_yaml_config = load_yaml_config(path)
                    final_yaml_config.update(included_yaml_config)
lintangsutawika's avatar
lintangsutawika committed
386
                except Exception as ex:
lintangsutawika's avatar
lintangsutawika committed
387
                    # If failed to load, ignore
lintangsutawika's avatar
lintangsutawika committed
388
                    raise ex
lintangsutawika's avatar
lintangsutawika committed
389
390
391
392
393
394

            final_yaml_config.update(yaml_config)
            return final_yaml_config
        return yaml_config


395
396
397
def regex_replace(string, pattern, repl, count=0):
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
398

lintangsutawika's avatar
lintangsutawika committed
399

400
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
401
env.filters["regex_replace"] = regex_replace
402
403
404
405
406


def apply_template(template, doc):
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
407
408


409
410
411
412
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
413
414
415
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
416
417


haileyschoelkopf's avatar
haileyschoelkopf committed
418
419
420
421
422
def pad_and_concat(max_length: int, tensors: List[torch.Tensor], padding_side="right"):
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
423
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
424
425
426
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
427

lintangsutawika's avatar
lintangsutawika committed
428
429
430
    for i, tensor in enumerate(tensors):
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
431
432
433
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
434
435
436
437
438
439
440
441
442
443
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
444
445
446
447
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
448
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
449
                            max_length - tensor_len,
450
451
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
452
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
453
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
454
455
456
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
457
458
459
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
460
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
461
462


463
464
465
def clear_torch_cache():
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
466
467


lintangsutawika's avatar
lintangsutawika committed
468
469
470
471
472
473
474
475
476
477
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
478
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
    ):
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )