evaluator.py 27.3 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Lintang Sutawika's avatar
Lintang Sutawika committed
29
30
31
32
from lm_eval.tasks import (
    TaskManager,
    get_task_dict,
)
33
34
35
36
37
38
39
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
40

Fabrizio Milo's avatar
Fabrizio Milo committed
41

42
43
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
44
    from lm_eval.api.task import Task
45
46


47
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
48
49
def simple_evaluate(
    model,
50
51
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
52
    num_fewshot: Optional[int] = None,
53
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
54
55
56
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
57
58
59
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
60
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
61
62
63
64
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
65
66
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
67
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
68
    fewshot_as_multiturn: bool = False,
69
70
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
71
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
72
    predict_only: bool = False,
73
74
75
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
76
    fewshot_random_seed: int = 1234,
Fabrizio Milo's avatar
Fabrizio Milo committed
77
):
78
    """Instantiate and evaluate a model on a list of tasks.
79

80
81
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
82
83
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
84
        Ignored if `model` argument is a LM object.
85
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
86
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
87
88
    :param num_fewshot: int
        Number of examples in few-shot context
89
    :param batch_size: int or str, optional
90
        Batch size for model
91
92
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
93
    :param device: str, optional
94
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
95
96
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
97
98
99
100
101
102
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
103
104
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
105
    :param bootstrap_iters:
106
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
107
108
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
109
    :param write_out: bool
110
111
112
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
113
114
    :param system_instruction: str
        System instruction to be applied to the prompt
115
116
117
118
119
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
120
121
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
122
123
124
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
125
126
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
127
128
129
130
131
132
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
133
134
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
135

136
    :return
137
        Dictionary of results
138
    """
139
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
140
    start_date = time.time()
141

142
143
144
145
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

146
    seed_message = []
147
148
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
149
        seed_message.append(f"Setting random seed to {random_seed}")
150
151
152
        random.seed(random_seed)

    if numpy_random_seed is not None:
153
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
154
155
156
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
157
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
158
159
        torch.manual_seed(torch_random_seed)

160
161
162
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

163
164
    if tasks is None:
        tasks = []
165
166
167
168
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
169

lintangsutawika's avatar
lintangsutawika committed
170
171
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
172
        eval_logger.warning(
173
174
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
175
        )
lintangsutawika's avatar
lintangsutawika committed
176
177
178
        if gen_kwargs == "":
            gen_kwargs = None

179
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
180
        if model_args is None:
181
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
182
            model_args = ""
183

184
        if isinstance(model_args, dict):
185
186
187
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
188
189
190
191
192
193
194
195
196
197
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
198
199
200
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
201
202
203
204
205
206
207
208
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
209
    else:
210
        if not isinstance(model, lm_eval.api.model.LM):
211
212
213
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
214
        eval_logger.info("Using pre-initialized model")
215
        lm = model
216

haileyschoelkopf's avatar
haileyschoelkopf committed
217
    if use_cache is not None:
218
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
219
220
221
222
223
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
224
225
226
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
227
228
        )

229
230
231
232
    if task_manager is None:
        task_manager = TaskManager(verbosity)

    task_dict = get_task_dict(tasks, task_manager)
Baber Abbasi's avatar
Baber Abbasi committed
233

Lintang Sutawika's avatar
Lintang Sutawika committed
234
235
236
237
238
239
240
241
242
243
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
244

245
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)
                eval_logger.info(
                    f"Setting fewshot random generator seed to {fewshot_random_seed}"
Baber Abbasi's avatar
Baber Abbasi committed
281
                )
Lintang Sutawika's avatar
Lintang Sutawika committed
282
283
284
285
286
287

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
288

Stephen Hogg's avatar
Stephen Hogg committed
289
    if check_integrity:
290
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
291

KonradSzafer's avatar
KonradSzafer committed
292
293
294
295
296
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
297
            chat_template=lm.chat_template(apply_chat_template),
298
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
299
300
        )

301
302
303
304
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
305
306
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
307
        bootstrap_iters=bootstrap_iters,
308
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
309
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
310
311
312
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
313
        verbosity=verbosity,
314
    )
315

316
    if lm.rank == 0:
317
318
319
320
321
322
323
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

324
325
        # add info about the model and few shot config
        results["config"] = {
326
            "model": model_name,
327
328
            "model_args": model_args,
        }
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
344
345
346
347
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
348
349
            }
        )
350
        results["git_hash"] = get_git_commit_hash()
351
        results["date"] = start_date
352
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
353
        add_tokenizer_info(results, lm)  # additional info about tokenizer
354
355
356
        return results
    else:
        return None
357

Leo Gao's avatar
Leo Gao committed
358

359
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
360
def evaluate(
361
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
362
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
363
    limit: Optional[int] = None,
364
365
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
366
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
367
368
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
369
    system_instruction: Optional[str] = None,
370
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
371
    fewshot_as_multiturn: bool = False,
372
    verbosity: str = "INFO",
Fabrizio Milo's avatar
Fabrizio Milo committed
373
):
374
375
376
377
378
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
379
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
380
381
382
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
383
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
384
    :param write_out: bool
385
386
387
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
388
389
    :param system_instruction: str
        System instruction to be applied to the prompt
390
391
392
393
394
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
395
396
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
397
398
399
    :return
        Dictionary of results
    """
400

401
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
402

403
    # tracks all Instances/requests a model must generate output on.
404
    requests = defaultdict(list)
405
406
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
407
    padding_requests = defaultdict(int)
408

409
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
410
    eval_tasks = get_task_list(task_dict)
411
    if not log_samples:
412
        if not all(
413
414
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
415
416
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
417
418
419

    # validation check: are we running multimodal task <-> non-multimodal model class, or vice-versa.
    incompatible_tasks = []
420
421
    for task_output in eval_tasks:
        task: Task = task_output.task
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

        if getattr(lm, "MULTIMODAL", False) != getattr(task, "MULTIMODAL", False):
            incompatible_tasks.append(task_output.task_name)
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
        else:
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which are text-only, but used a model type which only currently supports multimodal tasks."
            )
    # end multimodality validation check

    for task_output in eval_tasks:
        task: Task = task_output.task

439
        limit = get_sample_size(task, limit)
440
441
442
443
444
445
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
446
            system_instruction=system_instruction,
447
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
448
            fewshot_as_multiturn=fewshot_as_multiturn,
449
450
451
452
453
454
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
455
        )
456
        eval_logger.debug(
457
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
458
459
        )
        if write_out:
460
            print_writeout(task)
461
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
462
463
464
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
465
466

        if lm.world_size > 1:
467
468
469
470
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
471
472
473
474
475
476
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
477
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
478
            numpad = max(gathered_item) - gathered_item[lm.rank]
479
480
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
481

482
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
483
484
    # execute each type of request
    for reqtype, reqs in requests.items():
485
        eval_logger.info(f"Running {reqtype} requests")
486
487
488
489
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
490

491
492
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
493
494
                cloned_reqs.extend([req] * req.repeats)

495
496
497
498
499
500
501
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

502
503
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
504

505
506
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
507
508
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
509
510
    for task_output in eval_tasks:
        task = task_output.task
511
512
        task.apply_filters()

513
514
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
515
        # TODO: make it possible to use a different metric per filter
516
        # Pre-process task.instances to group by doc_id
517
        instances_by_doc_id = defaultdict(list)
518
519
520
521
522
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
523
        # iterate over different filters used
524
525
526
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
527
            )
528
            for doc_id, doc in doc_iterator:
529
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
530
                metrics = task.process_results(
531
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
532
                )
533
534
535
536
537
538
539
540
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
541
542
543
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
544
545
546
547
548
549
550
551
552
553
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
554
555
                    }
                    example.update(metrics)
556
                    task_output.logged_samples.append(example)
557
                for metric, value in metrics.items():
558
                    task_output.sample_metrics[(metric, filter_key)].append(value)
559

560
561
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
562
        # first gather logged samples across all ranks
563
564
565
566
567
568
569
570
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
571
                )
572

573
574
575
576
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
577

578
579
580
581
582
583
584
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
585
                )
586
587
588
589
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
590

591
    if RANK == 0:
592
593
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
594
595
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
596
597
598
599
600
601
602
603
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
604

605
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
606
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
622
623
624
625
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
626

Lintang Sutawika's avatar
Lintang Sutawika committed
627
628
629
630
631
632
633
634
635
636
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
637

638
        results_dict = {
639
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
640
641
642
643
644
645
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
646
647
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
648
            "n-shot": dict(sorted(num_fewshot.items())),
649
            "higher_is_better": dict(sorted(higher_is_better.items())),
650
651
652
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
653
654
655
656
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
657
658
659
                }
                for task_output in eval_tasks
            },
660
        }
661
662
663
664
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
665

666
667
    else:
        return None
668
669
670
671


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
672
673
674
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
675
676
677
    }

    return request_caching_args