task.py 35.6 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

48
49
50

@dataclass
class TaskConfig(dict):
51
    # task naming/registry
52
    task: str = None
53
    group: Union[str, list] = None
54
55
56
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64
65
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
haileyschoelkopf's avatar
haileyschoelkopf committed
66
    template_aliases: str = ""
67
68
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
69
    gold_alias: Union[Callable, str] = None
70
    use_prompt: str = None
71
    description: str = ""
72
73
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
74
    # runtime configuration options
75
76
    num_fewshot: int = 0
    batch_size: int = 1
77
    # scoring options
78
79
    metric_list: str = None
    output_type: str = "greedy_until"
80
    generation_kwargs: dict = None
81
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
82
    filter_list: Union[str, list] = None
83
84
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
85

lintangsutawika's avatar
lintangsutawika committed
86
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
87

88
89
90
91
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
haileyschoelkopf's avatar
haileyschoelkopf committed
92
        if type(self.template_aliases) == str:
93
94
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
95

96
97
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
98

99
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
100
                self.gold_alias = self.template_aliases + self.gold_alias
101

haileyschoelkopf's avatar
haileyschoelkopf committed
102
        if self.generation_kwargs:
103
104
105
            assert (
                self.output_type == "greedy_until"
            ), "passed `generation_kwargs`, but not using a generation request type!"
haileyschoelkopf's avatar
haileyschoelkopf committed
106
        elif self.output_type == "greedy_until":
107
108
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
109

haileyschoelkopf's avatar
haileyschoelkopf committed
110
111
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

112
113
114
    def __getitem__(self, item):
        return getattr(self, item)

115
    def to_dict(self):
116
117
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
118
        Used for dumping results alongside full task configuration
119

haileyschoelkopf's avatar
haileyschoelkopf committed
120
121
122
123
124
125
126
127
128
129
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
130
131
132
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
133
        return cfg_dict
134

135
136
137
138
139
140
141
142
143
144
145
146

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
147

148
149
150
151
152
153
154
155
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
191
        self._config = TaskConfig(**config) if config else TaskConfig()
192
193
194

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
195
            for name, components in self._config.get(
196
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
197
            ):
198
199
200
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
201
202
203
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
230
231
232
233
234
235
236
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

274
275
276
277
278
279
280
281
282
283
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
284
            eval_logger.warning(
285
                "has_training_docs and has_validation_docs are False"
286
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
287
            )
288
289
            return self.test_docs()

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

328
    def build_all_requests(self, limit=None, rank=None, world_size=None):
329
330
331
332
333
334
335
336
337
338
339
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
340
341
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
342
        ):
343
            # sample fewshot context #TODO: need to offset doc_id by rank now!
344
345
346
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
347

haileyschoelkopf's avatar
haileyschoelkopf committed
348
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
349
350
351
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
352
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
353
            )
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
379
            The number of times each instance in a dataset is inferred on. Defaults to 1,
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
415
416
417
418
419
420
421
422
423
424
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
445
446
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
447
        else:
lintangsutawika's avatar
lintangsutawika committed
448
449
450
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
451
452
453
454
455
456

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
457
458
459
460
461
462
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
463

464
    def dump_config(self):
465
        """Returns a dictionary representing the task's config.
466
467
468
469
470
471
472
473

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
        # (batch size, num_fewshot)
        return self._config.to_dict()

474
475
476

class ConfigurableTask(Task):

477
    VERSION = "Yaml"
478
    OUTPUT_TYPE = None
479
    CONFIG = None
480
481
482
483

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
484
        # Get pre-configured attributes
485
        self._config = self.CONFIG
486

487
488
        # Use new configurations if there was no preconfiguration
        if self._config is None:
489
            self._config = TaskConfig(**config)
490
491
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
492
            if config is not None:
493
                self._config.__dict__.update(config)
494

495
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
496
497
498
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
499
500

        if self._config.output_type is not None:
501
            assert self._config.output_type in ALL_OUTPUT_TYPES
502
503
            self.OUTPUT_TYPE = self._config.output_type

504
505
506
507
508
509
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

510
511
512
513
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
514

515
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
516
        if self._config.metric_list is None:
517
            # TODO: handle this in TaskConfig.__post_init__ ?
518
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
519
520
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
lintangsutawika's avatar
lintangsutawika committed
521
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
522
523
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
524
525
526
527
528
529
530
531
532
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
533
534
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
535

536
                if "aggregation" in metric_config:
537
                    agg_name = metric_config["aggregation"]
538
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
539
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
540
541
542
543
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
544
                else:
545
546

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
547
                    metric_agg = get_default_aggregation(metric_name)
548
                    eval_logger.warning(
549
550
551
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
552
                    )
553
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
554

555
556
557
558
559
560
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
561
562
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
563
                        f"higher_is_better={is_higher_better(metric_name)}"
564
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
565
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
566

567
        self.download(self._config.dataset_kwargs)
568
569
570
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
571
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
572
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
573
574
575
576
577
578
579
580
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
581
582
583
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
584
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
585
        else:
586
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
587
588

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
589
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
590
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
591
592
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
593
594
595
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
596
597
598
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
599
            )
600

601
602
603
604
605
606
607
608
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

639
    def fewshot_docs(self):
640
        if self._config.fewshot_split is not None:
641
            return self.dataset[self._config.fewshot_split]
642
643
644
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
645
                    f"Task '{self._config.task}': "
646
647
648
649
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
650

651
652
653
654
655
656
657
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

658
659
660
661
662
663
664
665
666
667
668
669
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
670
671
672

        if self.prompt is not None:
            doc_to_text = self.prompt
673
674
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
675

676
677
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
678
        elif callable(doc_to_text):
679
680
681
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
682
        else:
683
            print(type(doc_to_text))
684
            raise TypeError
685
686

    def doc_to_target(self, doc):
687
688
689

        if self.prompt is not None:
            doc_to_target = self.prompt
690
691
692
        else:
            doc_to_target = self._config.doc_to_target

693
694
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
695
        elif callable(doc_to_target):
696
697
698
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
699
700
        else:
            raise TypeError
701

702
    def gold_alias(self, doc):
703
704
705
706
707
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
708
        if self._config.gold_alias is not None:
709
710
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
711
            return self.doc_to_target(doc)
712
713
714
715
716
717
718
719
720
721

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

722
723
    def construct_requests(self, doc, ctx, **kwargs):

724
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
725
            arguments = (ctx, self.doc_to_target(doc))
726
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
727
            arguments = (self.doc_to_target(doc),)
728
        elif self.OUTPUT_TYPE == "multiple_choice":
729
730
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
731
732
733
734
735
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
736
            request_list = [
737
738
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
739
                    doc=doc,
740
                    arguments=(ctx, " {}".format(choice)),
741
                    idx=i,
742
743
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
744
                for i, choice in enumerate(choices)
745
            ]
746
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
747
            if "acc_mutual_info" in self._metric_fn_list.keys():
748
749
750
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
751
                # here mutual info refers to calculating
752
753
754
755
756
757
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
758
                            doc=doc,
759
760
761
762
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
763
                        for i, choice in enumerate(choices)
764
765
766
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
767

768
        elif self.OUTPUT_TYPE == "greedy_until":
769
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
770
771

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
772
773
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
774
775
776

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
777
778
779
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

780
        result_dict = {}
781
        use_metric = list(self._metric_fn_list.keys())
782
783
784
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
785
786
787
788
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
789
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
790
            (loglikelihood,) = results
791
792
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
793
            return {
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
809
            }
810
        elif self.OUTPUT_TYPE == "multiple_choice":
811
812

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
813
814
815
816
817
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

818
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
819
820
821
822
823
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
824
825
            if (
                2 * len(choices) == len(lls)
826
                and "acc_mutual_info" in self._metric_fn_list.keys()
827
828
829
830
831
832
833
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
834

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
835
836
            pred = np.argmax(lls)

837
            acc = 1.0 if np.argmax(lls) == gold else 0.0
838
839
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
840
841

            result_dict = {
842
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
843
844
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
845
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
846
847
            }

848
            if "exact_match" in self._metric_fn_list.keys():
849
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
850
                is_greedy = is_greedy[gold]  # take value for the gold answer
851
852
                result_dict["exact_match"] = int(is_greedy)

853
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
854
855
856
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
857
858
859
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

860
861
862
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
863
                gold = self.gold_alias(doc)
864
865
866
            else:
                gold = self.doc_to_target(doc)

867
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
868
                _dict = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
869
870
871
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
872
                )
873

lintangsutawika's avatar
lintangsutawika committed
874
                result_dict = {**result_dict, **_dict}
875
        else:
lintangsutawika's avatar
lintangsutawika committed
876
877
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
878
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
879
            )
880
881
882
883
884
885
886

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
887
        return self._higher_is_better
888
889
890
891
892
893
894
895
896
897


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
898
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
899
900
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
901
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
902
                doc=doc,
903
                arguments=(ctx, " {}".format(choice)),
904
                idx=i,
905
906
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
907
908
            for i, choice in enumerate(doc["choices"])
        ]
909
910

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
911
912
913
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
938
class PerplexityTask(Task):
939
940
941
942
943
944
945
946
947
948

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
949
    def fewshot_context(self, doc, num_fewshot, rnd=None):
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
978
979
980
981
982
983
984
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
985
986
987

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
988
989
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))