task.py 36.2 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
32
33
from lm_eval.api.metrics import (
    # get_metric,
    # get_aggregation,
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
lintangsutawika's avatar
lintangsutawika committed
34
    METRIC_REGISTRY,
35
36
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
37
38
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
39
    DEFAULT_AGGREGATION_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
)
41

42
43
44
45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

49
50
51
52

@dataclass
class TaskConfig(dict):

53
    task: str = None
54
55
    group: Union[str, list] = None

56
57
    dataset_path: str = None
    dataset_name: str = None
58
    dataset_kwargs: dict = None
59
60
61
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
62
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
63

64
    template_aliases: str = None
65
66
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
67
    use_prompt: str = None
68
    description: str = ""
69
70
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
71

72
73
    num_fewshot: int = 0
    batch_size: int = 1
74
75
    repeats: int = 1

76
    metric_list: str = None
lintangsutawika's avatar
lintangsutawika committed
77
    gold_alias: Union[Callable, str] = None
78
    output_type: str = "greedy_until"
79
    generation_kwargs: dict = None
lintangsutawika's avatar
lintangsutawika committed
80
    filter_list: Union[str, list] = None
81
82
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
83

lintangsutawika's avatar
lintangsutawika committed
84
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
85

86
87
88
89
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
90
91
92
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
93

94
95
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
96

97
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
98
                self.gold_alias = self.template_aliases + self.gold_alias
99

haileyschoelkopf's avatar
haileyschoelkopf committed
100
        if self.generation_kwargs:
101
102
103
            assert (
                self.output_type == "greedy_until"
            ), "passed `generation_kwargs`, but not using a generation request type!"
haileyschoelkopf's avatar
haileyschoelkopf committed
104
        elif self.output_type == "greedy_until":
105
106
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
107

haileyschoelkopf's avatar
haileyschoelkopf committed
108
109
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

110
111
112
    def __getitem__(self, item):
        return getattr(self, item)

113
    def to_dict(self):
114
115
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
116
        Used for dumping results alongside full task configuration
117

haileyschoelkopf's avatar
haileyschoelkopf committed
118
119
120
121
122
123
124
125
126
127
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
128
129
130
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
131
        return cfg_dict
132

133
134
135
136
137
138
139
140
141
142
143
144

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
145

146
147
148
149
150
151
152
153
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
189
        self._config = TaskConfig(**config) if config else TaskConfig()
190
191
192

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
193
            for name, components in self._config.get(
194
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
195
            ):
196
197
198
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
199
200
201
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
228
229
230
231
232
233
234
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

272
273
274
275
276
277
278
279
280
281
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
282
            eval_logger.warning(
283
                "has_training_docs and has_validation_docs are False"
284
                ", using test_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
285
            )
286
287
            return self.test_docs()

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

326
    def build_all_requests(self, limit=None, rank=None, world_size=None):
327
328
329
330
331
332
333
334
335
336
337
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
338
339
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
340
        ):
341
            # sample fewshot context #TODO: need to offset doc_id by rank now!
342
343
344
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
345
            # TODO: we should override this if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
346
347
348
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
349
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
350
            )
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
376
            The number of times each instance in a dataset is inferred on. Defaults to 1,
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
412
413
414
415
416
417
418
419
420
421
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
442
443
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
444
        else:
lintangsutawika's avatar
lintangsutawika committed
445
446
447
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
448
449
450
451
452
453

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
454
455
456
457
458
459
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
460

461
    def dump_config(self):
462
        """Returns a dictionary representing the task's config.
463
464
465
466
467
468
469
470

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
        # (batch size, num_fewshot)
        return self._config.to_dict()

471
472
473

class ConfigurableTask(Task):

474
    VERSION = "Yaml"
475
    OUTPUT_TYPE = None
476
    CONFIG = None
477
478
479
480

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
481
        # Get pre-configured attributes
482
        self._config = self.CONFIG
483

484
485
        # Use new configurations if there was no preconfiguration
        if self._config is None:
486
            self._config = TaskConfig(**config)
487
488
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
489
            if config is not None:
490
                self._config.__dict__.update(config)
491

492
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
493
494
495
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
496
497

        if self._config.output_type is not None:
498
            assert self._config.output_type in ALL_OUTPUT_TYPES
499
500
            self.OUTPUT_TYPE = self._config.output_type

501
502
503
504
505
506
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

507
508
509
510
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
511

512
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
513
        if self._config.metric_list is None:
514
            # TODO: handle this in TaskConfig.__post_init__ ?
515
516
            for metric_name in _metric_list:
                self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
517
518
519
                self._aggregation_list[metric_name] = DEFAULT_AGGREGATION_REGISTRY[
                    metric_name
                ]
520
521
522
                self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                    metric_name
                ]
523
524
525
526
527
528
529
530
531
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
532
                try:
533
                    self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
534
                except Exception:
535
536
537
538
539
540
541
542
543
544
545
546
547
548
                    eval_logger.warning(
                        f"Metric {metric_name} not found, "
                        "Searching from https://huggingface.co/evaluate-metric"
                    )
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_fn_list[metric_name] = metric_object
                        self._metric_fn_kwargs[metric_name] = kwargs

                    except Exception:
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
lintangsutawika's avatar
lintangsutawika committed
549

550
                if "aggregation" in metric_config:
551
                    agg_name = metric_config["aggregation"]
552
553
554
555
556
557
558
559
                    if type(agg_name) == str:
                        self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[
                            agg_name
                        ]
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
560
                else:
561
562
563

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
                    metric_agg = DEFAULT_AGGREGATION_REGISTRY[metric_name]
564
                    eval_logger.warning(
565
566
567
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
568
                    )
569
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
570

571
572
573
574
575
576
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
577
578
579
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
                        f"higher_is_better={HIGHER_IS_BETTER_REGISTRY[metric_name]}"
580
                    )
581
582
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
lintangsutawika's avatar
lintangsutawika committed
583
                    ]
584

585
        self.download(self._config.dataset_kwargs)
586
587
588
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
589
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
590
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
591
592
593
594
595
596
597
598
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
599
600
601
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
602
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
603
        else:
604
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
605
606

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
607
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
608
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
609
610
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
611
612
613
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
614
615
616
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
617
            )
618

619
620
621
622
623
624
625
626
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

657
    def fewshot_docs(self):
658
        if self._config.fewshot_split is not None:
659
            return self.dataset[self._config.fewshot_split]
660
661
662
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
663
                    f"Task '{self._config.task}': "
664
665
666
667
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
668

669
670
671
672
673
674
675
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

676
677
678
679
680
681
682
683
684
685
686
687
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
688
689
690

        if self.prompt is not None:
            doc_to_text = self.prompt
691
692
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
693

694
695
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
696
        elif callable(doc_to_text):
697
698
699
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
700
        else:
701
            print(type(doc_to_text))
702
            raise TypeError
703
704

    def doc_to_target(self, doc):
705
706
707

        if self.prompt is not None:
            doc_to_target = self.prompt
708
709
710
        else:
            doc_to_target = self._config.doc_to_target

711
712
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
713
        elif callable(doc_to_target):
714
715
716
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
717
718
        else:
            raise TypeError
719

720
    def gold_alias(self, doc):
721
        # TODO: reevaluate if we need this. implemented to have a
722
        # processed version of answer to put into gsm8k exact_match scoring as ref.
lintangsutawika's avatar
lintangsutawika committed
723
        if self._config.gold_alias is not None:
724
725
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
726
727
            # doc_to_target = self._config.doc_to_target
            return self.doc_to_target(doc)
728
729
730
731
732
733
734
735
736
737

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

738
739
    def construct_requests(self, doc, ctx, **kwargs):

740
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
741
            arguments = (ctx, self.doc_to_target(doc))
742
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
743
            arguments = (self.doc_to_target(doc),)
744
        elif self.OUTPUT_TYPE == "multiple_choice":
745
746
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
747
748
749
750
751
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
752
            request_list = [
753
754
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
755
                    doc=doc,
756
                    arguments=(ctx, " {}".format(choice)),
757
                    idx=i,
758
759
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
760
                for i, choice in enumerate(choices)
761
            ]
762
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
763
            if "acc_mutual_info" in self._metric_fn_list.keys():
764
765
766
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
767
                # here mutual info refers to calculating
768
769
770
771
772
773
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
774
                            doc=doc,
775
                            arguments=("", " {}".format(choice)),
776
777
778
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
779
                        for i, choice in enumerate(choices)
780
781
782
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
783

784
        elif self.OUTPUT_TYPE == "greedy_until":
785
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
786
787

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
788
789
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
790
791
792

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
793
794
795
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

796
        result_dict = {}
797
        use_metric = list(self._metric_fn_list.keys())
798
799
800
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
801
802
803
804
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
805
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
806
            (loglikelihood,) = results
807
808
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
809
            return {
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
825
            }
826
        elif self.OUTPUT_TYPE == "multiple_choice":
827
828

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
829
830
831
832
833
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

834
            pred = np.argmax(lls)
835
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
836
837
838
839
840
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
841
842
            if (
                2 * len(choices) == len(lls)
843
                and "acc_mutual_info" in self._metric_fn_list.keys()
844
845
846
847
848
849
850
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
851
852

            acc = 1.0 if np.argmax(lls) == gold else 0.0
853
854
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
855
856

            result_dict = {
857
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
858
859
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
860
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
861
862
863
            }

            # TODO: set which normalization metrics should be reported, and calculate them
864
            if "exact_match" in self._metric_fn_list.keys():
865
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
866
                is_greedy = is_greedy[gold]  # take value for the gold answer
867
868
                result_dict["exact_match"] = int(is_greedy)

869
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
870
871
872
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
873
874
875
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

876
877
878
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
879
                gold = self.gold_alias(doc)
880
881
882
            else:
                gold = self.doc_to_target(doc)

883
884
            for key, result in zip(self._metric_fn_list.keys(), results):
                _dict = self._metric_fn_list[key].compute(
haileyschoelkopf's avatar
haileyschoelkopf committed
885
886
887
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
888
                )
889

lintangsutawika's avatar
lintangsutawika committed
890
                result_dict = {**result_dict, **_dict}
891
        else:
lintangsutawika's avatar
lintangsutawika committed
892
893
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
894
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
895
            )
896
897
898
899
900
901
902

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
903
        return self._higher_is_better
904
905
906
907
908
909
910
911
912
913


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
914
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
915
916
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
917
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
918
                doc=doc,
919
                arguments=(ctx, " {}".format(choice)),
920
                idx=i,
921
922
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
923
924
            for i, choice in enumerate(doc["choices"])
        ]
925
926

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
927
928
929
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
954
class PerplexityTask(Task):
955
956
957
958
959
960
961
962
963
964

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
965
    def fewshot_context(self, doc, num_fewshot, rnd=None):
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
994
995
996
997
998
999
1000
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1001
1002
1003

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1004
1005
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))