glue.py 12.3 KB
Newer Older
Jason Phang's avatar
checkin  
Jason Phang committed
1
import numpy as np
Jason Phang's avatar
Jason Phang committed
2
from scipy.stats import pearsonr, spearmanr
Jason Phang's avatar
checkin  
Jason Phang committed
3
from sklearn.metrics import f1_score, matthews_corrcoef
Jason Phang's avatar
Jason Phang committed
4
from tqdm import auto as tqdm_lib
sdtblck's avatar
sdtblck committed
5
from . common import HFTask, simple_accuracy_metric, yesno
Jason Phang's avatar
checkin  
Jason Phang committed
6

Jason Phang's avatar
Jason Phang committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
def get_accuracy_and_f1(preds, golds):
    golds = np.array(golds)
    preds = np.array(preds)
    acc = float((preds == golds).mean())
    f1 = float(f1_score(y_true=golds, y_pred=preds))
    minor = {
        "acc": acc,
        "f1": f1,
        "acc_and_f1": (acc + f1) / 2,
    }
    return {
        "major": minor["acc_and_f1"],
        "minor": minor,
        "higher_is_better": True,
    }


sdtblck's avatar
sdtblck committed
24
class CoLA(HFTask):
sdtblck's avatar
sdtblck committed
25
26
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
27
    
Jason Phang's avatar
checkin  
Jason Phang committed
28
29
30
31
32
33
34
35
36
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jason Phang's avatar
Jason Phang committed
37
38
39
    def fewshot_description(self):
        return "Does this sentence make sense?:\tTrue or False?"

Jason Phang's avatar
checkin  
Jason Phang committed
40
    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
41
        text = "Sentence: {}\nAnswer:".format(doc["sentence"])
Jason Phang's avatar
checkin  
Jason Phang committed
42
43
44
45
        if include_target:
            text += " {}".format({1: "True", 0: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
46
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
47
48
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
49
50
51
52
53
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
54
            )
Jason Phang's avatar
Jason Phang committed
55
            preds.append(lm.loglikelihood(ctx, ' True') > lm.loglikelihood(ctx, ' False'))
Jason Phang's avatar
checkin  
Jason Phang committed
56
57
58
59
60
61
62
63
64
65
        golds = np.array(golds)
        preds = np.array(preds)
        mcc = float(matthews_corrcoef(y_true=golds, y_pred=preds))
        return {
            "major": mcc,
            "minor": {"mcc": mcc},
            "higher_is_better": True,
        }


sdtblck's avatar
sdtblck committed
66
class MNLI(HFTask):
sdtblck's avatar
sdtblck committed
67
68
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
69

Jason Phang's avatar
checkin  
Jason Phang committed
70
71
72
73
74
75
76
77
78
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Leo Gao's avatar
Leo Gao committed
79
80
81
82
    def training_docs(self):
        if self.has_validation_docs():
            return self.data["train_matched"]

Jason Phang's avatar
checkin  
Jason Phang committed
83
84
    def validation_docs(self):
        if self.has_validation_docs():
sdtblck's avatar
sdtblck committed
85
            return self.data["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
86
87
88

    def test_docs(self):
        if self.has_test_docs():
sdtblck's avatar
sdtblck committed
89
            return self.data["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
90
91
92

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
93
94
            doc["premise"],
            doc["hypothesis"],
Jason Phang's avatar
checkin  
Jason Phang committed
95
96
97
98
99
100
101
102
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
103
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
104
105
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
106
107
108
109
110
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
111
            )
Jason Phang's avatar
Jason Phang committed
112
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
113
114
115
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
116
117
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
118
119
120
        return simple_accuracy_metric(preds=preds, golds=golds)


Jason Phang's avatar
Jason Phang committed
121
122
123
124
125
126
127
128
129
130
131
class MNLIMismatched(MNLI):

    def validation_docs(self):
        if self.has_validation_docs():
            return self.data["validation_mismatched"]

    def test_docs(self):
        if self.has_test_docs():
            return self.data["test_mismatched"]


sdtblck's avatar
sdtblck committed
132
class MRPC(HFTask):
sdtblck's avatar
sdtblck committed
133
134
    DATASET_PATH = "glue"
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
166
            preds.append(lm.loglikelihood(ctx, 'yes') > lm.loglikelihood(ctx, 'no'))
Jason Phang's avatar
Jason Phang committed
167
168
        return get_accuracy_and_f1(preds=preds, golds=golds)

169
      
sdtblck's avatar
sdtblck committed
170
class RTE(HFTask):
sdtblck's avatar
sdtblck committed
171
172
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue or False?\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
seed  
Jason Phang committed
189
190
            # 0 = entailment
            # 1 = not_entailment
Jason Phang's avatar
Jason Phang committed
191
            text += " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
192
193
        return text

Jason Phang's avatar
Jason Phang committed
194
195
196
197
198
199
200
201
202
    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
203
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
204
205
206
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
207
class QNLI(HFTask):
sdtblck's avatar
sdtblck committed
208
209
    DATASET_PATH = "glue"
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
210
211
212
213
214
215
216
217
218
219
220

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
221
        text = "question:\t{}\nresponse:\t{}\nDoes this answer the question, Yes or No?:".format(
Jason Phang's avatar
Jason Phang committed
222
223
224
225
226
227
            doc["question"],
            doc["sentence"],
        )
        if include_target:
            # True = entailment
            # False = not entailment
Jason Phang's avatar
Jason Phang committed
228
            text += " {}".format({0: "Yes", 1: "No"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
229
230
231
232
233
234
235
236
237
238
239
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
240
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
241
242
243
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
244
class QQP(HFTask):
sdtblck's avatar
sdtblck committed
245
246
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
247
248
249
250
251
252
253
254
255
256
257

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
Jason Phang's avatar
Jason Phang committed
258
        return "Indicate if both questions ask the same thing."
Jason Phang's avatar
Jason Phang committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

    def doc_to_text(self, doc, include_target=True):
        text = "question 1:\t{}\nquestion 2:\t{}\nanswer:".format(
            doc["question1"],
            doc["question2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return get_accuracy_and_f1(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
282
class STSB(HFTask):
sdtblck's avatar
sdtblck committed
283
284
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing from a scale of 0-5, " \
           "where 5 means identical and 0 means unrelated."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
Jason Phang committed
305
            text += " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
306
307
308
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
309
310
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
311
312
313
314
315
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
316
            )
Jason Phang's avatar
Jason Phang committed
317
318
319
320
            output = lm.generate(context=ctx, max_gen_length=5).strip()
            first_element = output.split()[0]
            if first_element.isnumeric():
                pred = max(min(float(first_element), 5.0), 0.0)
Jason Phang's avatar
checkin  
Jason Phang committed
321
            else:
Jason Phang's avatar
Jason Phang committed
322
                pred = 2.5
Jason Phang's avatar
Jason Phang committed
323
            import pdb; pdb.set_trace()
Jason Phang's avatar
Jason Phang committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            preds.append(pred)
        pearson_corr = float(pearsonr(preds, golds)[0])
        spearman_corr = float(spearmanr(preds, golds)[0])
        minor = {
            "pearson": pearson_corr,
            "spearmanr": spearman_corr,
            "corr": (pearson_corr + spearman_corr) / 2,
        }
        return {
            "major": minor["corr"],
            "minor": minor,
            "higher_is_better": True,
        }


sdtblck's avatar
sdtblck committed
339
class SST(HFTask):
sdtblck's avatar
sdtblck committed
340
341
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"
Jason Phang's avatar
Jason Phang committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if each sentence is Positive or Negative."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence:\t{}\t\nanswer:".format(
            doc["sentence"],
        )
        if include_target:
            text += " {}".format({1: "Positive", 0: "Negative"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' Positive') > lm.loglikelihood(ctx, ' Negative'))
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
376
class WNLI(HFTask):
sdtblck's avatar
sdtblck committed
377
378
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"
379
    
Jason Phang's avatar
Jason Phang committed
380
381
382
383
384
385
386
387
388
389
390
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
391
392
            doc["sentence1"],
            doc["sentence2"],
Jason Phang's avatar
Jason Phang committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
411
412
413
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
414
415
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
416
        return simple_accuracy_metric(preds=preds, golds=golds)