task.py 35.5 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

48
49
50

@dataclass
class TaskConfig(dict):
51
    # task naming/registry
52
    task: str = None
53
    group: Union[str, list] = None
54
55
56
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64
65
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
66
    template_aliases: str = None
67
68
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
69
    gold_alias: Union[Callable, str] = None
70
    use_prompt: str = None
71
    description: str = ""
72
73
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
74
    # runtime configuration options
75
    num_fewshot: int = 0
76
    # scoring options
77
78
    metric_list: str = None
    output_type: str = "greedy_until"
79
    generation_kwargs: dict = None
80
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
81
    filter_list: Union[str, list] = None
82
83
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
84

lintangsutawika's avatar
lintangsutawika committed
85
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
86

87
88
89
90
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
91
92
93
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
94

95
96
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
97

98
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
99
                self.gold_alias = self.template_aliases + self.gold_alias
100

haileyschoelkopf's avatar
haileyschoelkopf committed
101
        if self.generation_kwargs:
102
103
104
            assert (
                self.output_type == "greedy_until"
            ), "passed `generation_kwargs`, but not using a generation request type!"
haileyschoelkopf's avatar
haileyschoelkopf committed
105
        elif self.output_type == "greedy_until":
106
107
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
108

haileyschoelkopf's avatar
haileyschoelkopf committed
109
110
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

111
112
113
    def __getitem__(self, item):
        return getattr(self, item)

114
    def to_dict(self):
115
116
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
117
        Used for dumping results alongside full task configuration
118

haileyschoelkopf's avatar
haileyschoelkopf committed
119
120
121
122
123
124
125
126
127
128
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
129
130
131
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
132
        return cfg_dict
133

134
135
136
137
138
139
140
141
142
143
144
145

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
146

147
148
149
150
151
152
153
154
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
190
        self._config = TaskConfig(**config) if config else TaskConfig()
191
192
193

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
194
            for name, components in self._config.get(
195
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
196
            ):
197
198
199
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
200
201
202
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
229
230
231
232
233
234
235
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

273
274
275
276
277
278
279
280
281
282
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
283
            eval_logger.warning(
284
                "has_training_docs and has_validation_docs are False"
285
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
286
            )
287
288
            return self.test_docs()

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

327
    def build_all_requests(self, limit=None, rank=None, world_size=None):
328
329
330
331
332
333
334
335
336
337
338
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
339
340
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
341
        ):
342
            # sample fewshot context #TODO: need to offset doc_id by rank now!
343
344
345
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
346

haileyschoelkopf's avatar
haileyschoelkopf committed
347
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
348
349
350
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
351
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
352
            )
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
378
            The number of times each instance in a dataset is inferred on. Defaults to 1,
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
414
415
416
417
418
419
420
421
422
423
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
444
445
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
446
        else:
lintangsutawika's avatar
lintangsutawika committed
447
448
449
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
450
451
452
453
454
455

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
456
457
458
459
460
461
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
462

463
    def dump_config(self):
464
        """Returns a dictionary representing the task's config.
465
466
467
468
469

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
470
        # (num_fewshot)
471
472
        return self._config.to_dict()

473
474
475

class ConfigurableTask(Task):

476
    VERSION = "Yaml"
477
    OUTPUT_TYPE = None
478
    CONFIG = None
479
480
481
482

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
483
        # Get pre-configured attributes
484
        self._config = self.CONFIG
485

486
487
        # Use new configurations if there was no preconfiguration
        if self._config is None:
488
            self._config = TaskConfig(**config)
489
490
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
491
            if config is not None:
492
                self._config.__dict__.update(config)
493

494
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
495
496
497
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
498
499

        if self._config.output_type is not None:
500
            assert self._config.output_type in ALL_OUTPUT_TYPES
501
502
            self.OUTPUT_TYPE = self._config.output_type

503
504
505
506
507
508
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

509
510
511
512
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
513

514
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
515
        if self._config.metric_list is None:
516
            # TODO: handle this in TaskConfig.__post_init__ ?
517
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
518
519
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
lintangsutawika's avatar
lintangsutawika committed
520
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
521
522
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
523
524
525
526
527
528
529
530
531
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
532
533
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
534

535
                if "aggregation" in metric_config:
536
                    agg_name = metric_config["aggregation"]
537
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
538
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
539
540
541
542
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
543
                else:
544
545

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
546
                    metric_agg = get_default_aggregation(metric_name)
547
                    eval_logger.warning(
548
549
550
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
551
                    )
552
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
553

554
555
556
557
558
559
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
560
561
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
562
                        f"higher_is_better={is_higher_better(metric_name)}"
563
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
564
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
565

566
        self.download(self._config.dataset_kwargs)
567
568
569
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
570
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
571
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
572
573
574
575
576
577
578
579
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
580
581
582
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
583
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
584
        else:
585
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
586
587

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
588
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
589
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
590
591
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
592
593
594
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
595
596
597
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
598
            )
599

600
601
602
603
604
605
606
607
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

638
    def fewshot_docs(self):
639
        if self._config.fewshot_split is not None:
640
            return self.dataset[self._config.fewshot_split]
641
642
643
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
644
                    f"Task '{self._config.task}': "
645
646
647
648
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
649

650
651
652
653
654
655
656
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

657
658
659
660
661
662
663
664
665
666
667
668
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
669
670
671

        if self.prompt is not None:
            doc_to_text = self.prompt
672
673
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
674

675
676
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
677
        elif callable(doc_to_text):
678
679
680
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
681
        else:
682
            print(type(doc_to_text))
683
            raise TypeError
684
685

    def doc_to_target(self, doc):
686
687
688

        if self.prompt is not None:
            doc_to_target = self.prompt
689
690
691
        else:
            doc_to_target = self._config.doc_to_target

692
693
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
694
        elif callable(doc_to_target):
695
696
697
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
698
699
        else:
            raise TypeError
700

701
    def gold_alias(self, doc):
702
703
704
705
706
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
707
        if self._config.gold_alias is not None:
708
709
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
710
            return self.doc_to_target(doc)
711
712
713
714
715
716
717
718
719
720

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

721
722
    def construct_requests(self, doc, ctx, **kwargs):

723
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
724
            arguments = (ctx, self.doc_to_target(doc))
725
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
726
            arguments = (self.doc_to_target(doc),)
727
        elif self.OUTPUT_TYPE == "multiple_choice":
728
729
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
730
731
732
733
734
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
735
            request_list = [
736
737
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
738
                    doc=doc,
739
                    arguments=(ctx, " {}".format(choice)),
740
                    idx=i,
741
742
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
743
                for i, choice in enumerate(choices)
744
            ]
745
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
746
            if "acc_mutual_info" in self._metric_fn_list.keys():
747
748
749
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
750
                # here mutual info refers to calculating
751
752
753
754
755
756
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
757
                            doc=doc,
758
759
760
761
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
762
                        for i, choice in enumerate(choices)
763
764
765
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
766

767
        elif self.OUTPUT_TYPE == "greedy_until":
768
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
769
770

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
771
772
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
773
774
775

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
776
777
778
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

779
        result_dict = {}
780
        use_metric = list(self._metric_fn_list.keys())
781
782
783
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
784
785
786
787
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
788
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
789
            (loglikelihood,) = results
790
791
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
792
            return {
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
808
            }
809
        elif self.OUTPUT_TYPE == "multiple_choice":
810
811

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
812
813
814
815
816
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

817
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
818
819
820
821
822
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
823
824
            if (
                2 * len(choices) == len(lls)
825
                and "acc_mutual_info" in self._metric_fn_list.keys()
826
827
828
829
830
831
832
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
833

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
834
835
            pred = np.argmax(lls)

836
            acc = 1.0 if np.argmax(lls) == gold else 0.0
837
838
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
839
840

            result_dict = {
841
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
842
843
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
844
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
845
846
            }

847
            if "exact_match" in self._metric_fn_list.keys():
848
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
849
                is_greedy = is_greedy[gold]  # take value for the gold answer
850
851
                result_dict["exact_match"] = int(is_greedy)

852
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
853
854
855
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
856
857
858
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

859
860
861
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
862
                gold = self.gold_alias(doc)
863
864
865
            else:
                gold = self.doc_to_target(doc)

866
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
867
                _dict = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
868
869
870
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
871
                )
872

lintangsutawika's avatar
lintangsutawika committed
873
                result_dict = {**result_dict, **_dict}
874
        else:
lintangsutawika's avatar
lintangsutawika committed
875
876
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
877
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
878
            )
879
880
881
882
883
884
885

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
886
        return self._higher_is_better
887
888
889
890
891
892
893
894
895
896


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
897
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
898
899
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
900
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
901
                doc=doc,
902
                arguments=(ctx, " {}".format(choice)),
903
                idx=i,
904
905
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
906
907
            for i, choice in enumerate(doc["choices"])
        ]
908
909

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
910
911
912
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
937
class PerplexityTask(Task):
938
939
940
941
942
943
944
945
946
947

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
948
    def fewshot_context(self, doc, num_fewshot, rnd=None):
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
977
978
979
980
981
982
983
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
984
985
986

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
987
988
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))