metrics.py 7.39 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5
6

import numpy as np
import sacrebleu
import sklearn
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8
9
10
11
12
13


def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
14
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
15
16
17
18
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
19
20
21
22
23
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
24
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
25
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
26
27


&'s avatar
& committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def median(arr):
    return arr[len(arr) // 2]


def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

65

Leo Gao's avatar
Leo Gao committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
97
98
99
100
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

101

Leo Gao's avatar
Leo Gao committed
102
103
104
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

105
106
107
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
108

&'s avatar
& committed
109
110
111
112
113
114
115
116
117
118
119
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
120
121
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
122
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
123
124
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
125
126
127
128
129
130
131
132
133

def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
134
135
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
136
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
137
138
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
139
140
141
142
143
144
145
146
147
148

def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
149
150
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
151
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
152
153
154
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
155
156
157
158
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
159
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
160
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
161
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
162
163
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
164
165
166
167
168
169
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
170
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
171
        refs = list(refs)
&'s avatar
& committed
172
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
173
        refs = [[ref] for ref in refs]
&'s avatar
& committed
174
175
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
176

&'s avatar
& committed
177
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
178
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
179
        preds = list(preds)
&'s avatar
& committed
180
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
181
182
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
183
184

    return refs, preds
Leo Gao's avatar
Leo Gao committed
185

186
# stderr stuff
Leo Gao's avatar
Leo Gao committed
187

Leo Gao's avatar
Leo Gao committed
188
189
190
191
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
192

Leo Gao's avatar
Leo Gao committed
193
194
195
196
197
198
199
200
201
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
202

203
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
204
205
    import multiprocessing as mp
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
206
207
208
209
210
211
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
    # equivalent to stderr calculated without Bessel's correction in the stddev. 
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
212
    res = []
213
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
214
    from tqdm import tqdm
Leo Gao's avatar
Leo Gao committed
215
    print("bootstrapping for stddev:", f.__name__)
216
217
218
    for bootstrap in tqdm(pool.imap(
            _bootstrap_internal(f, chunk_size),
            [(i, xs) for i in range(iters // chunk_size)]), total=iters // chunk_size):
Leo Gao's avatar
Leo Gao committed
219
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
220
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
221

Leo Gao's avatar
Leo Gao committed
222
    pool.close()
Leo Gao's avatar
Leo Gao committed
223
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
224
225


226
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
227
228
229
230
231
232
233
234
235
236
237
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
238
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
239
240
241
242
243
244
245

    stderr = {
        mean: mean_stderr,
        acc_all: acc_all_stderr
        
    }

Leo Gao's avatar
Leo Gao committed
246
    return stderr.get(metric, None)