metrics.py 9.92 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5

import numpy as np
import sacrebleu
Jonathan Tow's avatar
Jonathan Tow committed
6
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8

haileyschoelkopf's avatar
haileyschoelkopf committed
9
import evaluate
&'s avatar
& committed
10

haileyschoelkopf's avatar
haileyschoelkopf committed
11
12

AGGREGATION_REGISTRY = {}
lintangsutawika's avatar
lintangsutawika committed
13

14
15
METRIC_REGISTRY = {
    "acc": None,
haileyschoelkopf's avatar
haileyschoelkopf committed
16
    "acc_norm": None,
17
    "acc_mutual_info": None,
haileyschoelkopf's avatar
haileyschoelkopf committed
18
19
    "word_perplexity": None,
    "byte_perplexity": None,
20
}
haileyschoelkopf's avatar
haileyschoelkopf committed
21

lintangsutawika's avatar
lintangsutawika committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
HIGHER_IS_BETTER_REGISTRY = {
    "matthews_corrcoef": True,
    "f1_score": True,
    "perplexity": False,
    "bleu": True,
    "chrf": True,
    "ter": False,

    "acc": True,
    "acc_norm": True,
    "acc_mutual_info": True,
    "word_perplexity": False,
    "byte_perplexity": False,
    "bits_per_byte": False,
}
haileyschoelkopf's avatar
haileyschoelkopf committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

def register_metric(name):
    # TODO: do we want to enforce a certain interface to registered metrics?
    def decorate(fn):
        assert (
            name not in METRIC_REGISTRY
        ), f"metric named '{name}' conflicts with existing registered metric!"

        METRIC_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_metric(name):

    try:
        return METRIC_REGISTRY[name]
    except KeyError:
        # TODO: change this print to logging?
        print(f"Could not find registered metric '{name}' in lm-eval, \
searching in HF Evaluate library...")
        try:
            metric_object = evaluate.load(name)
            return metric_object.compute
        except:
            raise Warning(
                "{} not found in the evaluate library!".format(name),
                "Please check https://huggingface.co/evaluate-metric",
            )


def register_aggregation(name):
70
    # TODO: should we enforce a specific interface to aggregation metrics?
haileyschoelkopf's avatar
haileyschoelkopf committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    def decorate(fn):
        assert (
            name not in AGGREGATION_REGISTRY
        ), f"aggregation named '{name}' conflicts with existing registered aggregation!"

        AGGREGATION_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_aggregation(name):

    try:
        return AGGREGATION_REGISTRY[name]
    except KeyError:
        raise Warning(
            "{} not a registered aggregation metric!".format(name),
        )


@register_aggregation("mean")
&'s avatar
& committed
93
94
95
96
def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
97
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
98
99
100
101
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
102
103
104
105
106
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
107
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
108
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
109
110


haileyschoelkopf's avatar
haileyschoelkopf committed
111
@register_aggregation("median")
&'s avatar
& committed
112
113
114
115
def median(arr):
    return arr[len(arr) // 2]


haileyschoelkopf's avatar
haileyschoelkopf committed
116
@register_metric("matthews_corrcoef")
&'s avatar
& committed
117
118
119
120
121
122
123
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


haileyschoelkopf's avatar
haileyschoelkopf committed
124
@register_metric("f1_score")
&'s avatar
& committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
141
        paragraph_id = doc["idx"]["paragraph"]
&'s avatar
& committed
142
        question_id = doc["idx"]["question"]
143
144
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []
&'s avatar
& committed
145
146
147

        gold_label = doc["label"] == 1

148
        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
&'s avatar
& committed
149
150
151
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

152

Leo Gao's avatar
Leo Gao committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
170
171
172
173
174
175
176
177
178
179

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


haileyschoelkopf's avatar
haileyschoelkopf committed
180
@register_metric("perplexity")
181
@register_aggregation("perplexity")
&'s avatar
& committed
182
183
184
185
def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
186
187
188
189
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

190

haileyschoelkopf's avatar
haileyschoelkopf committed
191
@register_metric("weighted_perplexity")
haileyschoelkopf's avatar
haileyschoelkopf committed
192
@register_aggregation("weighted_perplexity")
Leo Gao's avatar
Leo Gao committed
193
194
195
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

Fabrizio Milo's avatar
Fabrizio Milo committed
196

haileyschoelkopf's avatar
haileyschoelkopf committed
197
198
@register_metric("bits_per_byte")
@register_aggregation("bits_per_byte")
199
200
201
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
202

haileyschoelkopf's avatar
haileyschoelkopf committed
203
@register_metric("bleu")
&'s avatar
& committed
204
205
206
207
208
209
210
211
212
213
214
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
215
216
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
217
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
218
219
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
220

haileyschoelkopf's avatar
haileyschoelkopf committed
221
@register_metric("chrf")
&'s avatar
& committed
222
223
224
225
226
227
228
229
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
230
231
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
232
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
233
234
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
235

haileyschoelkopf's avatar
haileyschoelkopf committed
236
@register_metric("ter")
&'s avatar
& committed
237
238
239
240
241
242
243
244
245
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
246
247
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
248
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
249
250
251
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
252
253
254
255
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
256
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
257
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
258
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
259
260
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
261
262
263
264
265
266
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
267
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
268
        refs = list(refs)
&'s avatar
& committed
269
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
270
        refs = [[ref] for ref in refs]
&'s avatar
& committed
271
272
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
273

&'s avatar
& committed
274
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
275
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
276
        preds = list(preds)
&'s avatar
& committed
277
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
278
279
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
280
281

    return refs, preds
Leo Gao's avatar
Leo Gao committed
282

Fabrizio Milo's avatar
Fabrizio Milo committed
283

284
# stderr stuff
Leo Gao's avatar
Leo Gao committed
285

Fabrizio Milo's avatar
Fabrizio Milo committed
286

Leo Gao's avatar
Leo Gao committed
287
288
289
290
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
291

Leo Gao's avatar
Leo Gao committed
292
293
294
295
296
297
298
299
300
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
301

302
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
303
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
304

Leo Gao's avatar
Leo Gao committed
305
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
306
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
307
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
308
309
310
311
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
312
    res = []
313
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
314
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
315

Leo Gao's avatar
Leo Gao committed
316
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
317
318
    for bootstrap in tqdm(
        pool.imap(
319
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
320
321
322
323
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
324
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
325
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
326

Leo Gao's avatar
Leo Gao committed
327
    pool.close()
Leo Gao's avatar
Leo Gao committed
328
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
329
330


331
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
332
333
334
335
336
337
338
339
340
341
342
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
343
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
344

Fabrizio Milo's avatar
Fabrizio Milo committed
345
    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}
Leo Gao's avatar
Leo Gao committed
346

Leo Gao's avatar
Leo Gao committed
347
    return stderr.get(metric, None)
Jonathan Tow's avatar
Jonathan Tow committed
348
349
350
351


def yesno(x):
    if x:
Fabrizio Milo's avatar
Fabrizio Milo committed
352
        return "yes"
Jonathan Tow's avatar
Jonathan Tow committed
353
    else:
Fabrizio Milo's avatar
Fabrizio Milo committed
354
        return "no"