metrics.py 9.41 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5

import numpy as np
import sacrebleu
Jonathan Tow's avatar
Jonathan Tow committed
6
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8

haileyschoelkopf's avatar
haileyschoelkopf committed
9
import evaluate
&'s avatar
& committed
10

haileyschoelkopf's avatar
haileyschoelkopf committed
11
12

AGGREGATION_REGISTRY = {}
13
14
15
16
METRIC_REGISTRY = {
    "acc": None,
    "acc_norm": None,  
}
haileyschoelkopf's avatar
haileyschoelkopf committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


def register_metric(name):
    # TODO: do we want to enforce a certain interface to registered metrics?
    def decorate(fn):
        assert (
            name not in METRIC_REGISTRY
        ), f"metric named '{name}' conflicts with existing registered metric!"

        METRIC_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_metric(name):

    try:
        return METRIC_REGISTRY[name]
    except KeyError:
        # TODO: change this print to logging?
        print(f"Could not find registered metric '{name}' in lm-eval, \
searching in HF Evaluate library...")
        try:
            metric_object = evaluate.load(name)
            return metric_object.compute
        except:
            raise Warning(
                "{} not found in the evaluate library!".format(name),
                "Please check https://huggingface.co/evaluate-metric",
            )


def register_aggregation(name):
51
    # TODO: should we enforce a specific interface to aggregation metrics?
haileyschoelkopf's avatar
haileyschoelkopf committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    def decorate(fn):
        assert (
            name not in AGGREGATION_REGISTRY
        ), f"aggregation named '{name}' conflicts with existing registered aggregation!"

        AGGREGATION_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_aggregation(name):

    try:
        return AGGREGATION_REGISTRY[name]
    except KeyError:
        raise Warning(
            "{} not a registered aggregation metric!".format(name),
        )


@register_aggregation("mean")
&'s avatar
& committed
74
75
76
77
def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
78
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
79
80
81
82
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
83
84
85
86
87
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
88
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
89
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
90
91


haileyschoelkopf's avatar
haileyschoelkopf committed
92
@register_aggregation("median")
&'s avatar
& committed
93
94
95
96
def median(arr):
    return arr[len(arr) // 2]


haileyschoelkopf's avatar
haileyschoelkopf committed
97
@register_metric("matthews_corrcoef")
&'s avatar
& committed
98
99
100
101
102
103
104
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


haileyschoelkopf's avatar
haileyschoelkopf committed
105
@register_metric("f1_score")
&'s avatar
& committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
122
        paragraph_id = doc["idx"]["paragraph"]
&'s avatar
& committed
123
        question_id = doc["idx"]["question"]
124
125
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []
&'s avatar
& committed
126
127
128

        gold_label = doc["label"] == 1

129
        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
&'s avatar
& committed
130
131
132
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

133

Leo Gao's avatar
Leo Gao committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
151
152
153
154
155
156
157
158
159
160

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


haileyschoelkopf's avatar
haileyschoelkopf committed
161
@register_metric("perplexity")
162
@register_aggregation("perplexity")
&'s avatar
& committed
163
164
165
166
def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
167
168
169
170
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

171

haileyschoelkopf's avatar
haileyschoelkopf committed
172
@register_metric("weighted_perplexity")
Leo Gao's avatar
Leo Gao committed
173
174
175
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

Fabrizio Milo's avatar
Fabrizio Milo committed
176

177
178
179
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
180

haileyschoelkopf's avatar
haileyschoelkopf committed
181
@register_metric("bleu")
&'s avatar
& committed
182
183
184
185
186
187
188
189
190
191
192
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
193
194
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
195
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
196
197
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
198

haileyschoelkopf's avatar
haileyschoelkopf committed
199
@register_metric("chrf")
&'s avatar
& committed
200
201
202
203
204
205
206
207
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
208
209
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
210
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
211
212
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
213

haileyschoelkopf's avatar
haileyschoelkopf committed
214
@register_metric("ter")
&'s avatar
& committed
215
216
217
218
219
220
221
222
223
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
224
225
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
226
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
227
228
229
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
230
231
232
233
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
234
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
235
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
236
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
237
238
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
239
240
241
242
243
244
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
245
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
246
        refs = list(refs)
&'s avatar
& committed
247
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
248
        refs = [[ref] for ref in refs]
&'s avatar
& committed
249
250
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
251

&'s avatar
& committed
252
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
253
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
254
        preds = list(preds)
&'s avatar
& committed
255
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
256
257
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
258
259

    return refs, preds
Leo Gao's avatar
Leo Gao committed
260

Fabrizio Milo's avatar
Fabrizio Milo committed
261

262
# stderr stuff
Leo Gao's avatar
Leo Gao committed
263

Fabrizio Milo's avatar
Fabrizio Milo committed
264

Leo Gao's avatar
Leo Gao committed
265
266
267
268
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
269

Leo Gao's avatar
Leo Gao committed
270
271
272
273
274
275
276
277
278
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
279

280
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
281
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
282

Leo Gao's avatar
Leo Gao committed
283
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
284
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
285
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
286
287
288
289
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
290
    res = []
291
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
292
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
293

Leo Gao's avatar
Leo Gao committed
294
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
295
296
    for bootstrap in tqdm(
        pool.imap(
297
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
298
299
300
301
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
302
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
303
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
304

Leo Gao's avatar
Leo Gao committed
305
    pool.close()
Leo Gao's avatar
Leo Gao committed
306
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
307
308


309
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
310
311
312
313
314
315
316
317
318
319
320
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
321
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
322

Fabrizio Milo's avatar
Fabrizio Milo committed
323
    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}
Leo Gao's avatar
Leo Gao committed
324

Leo Gao's avatar
Leo Gao committed
325
    return stderr.get(metric, None)
Jonathan Tow's avatar
Jonathan Tow committed
326
327
328
329


def yesno(x):
    if x:
Fabrizio Milo's avatar
Fabrizio Milo committed
330
        return "yes"
Jonathan Tow's avatar
Jonathan Tow committed
331
    else:
Fabrizio Milo's avatar
Fabrizio Milo committed
332
        return "no"