metrics.py 9.61 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5

import numpy as np
import sacrebleu
Jonathan Tow's avatar
Jonathan Tow committed
6
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8

haileyschoelkopf's avatar
haileyschoelkopf committed
9
import evaluate
&'s avatar
& committed
10

haileyschoelkopf's avatar
haileyschoelkopf committed
11
12

AGGREGATION_REGISTRY = {}
13
14
METRIC_REGISTRY = {
    "acc": None,
haileyschoelkopf's avatar
haileyschoelkopf committed
15
    "acc_norm": None,
16
    "acc_mutual_info": None,
haileyschoelkopf's avatar
haileyschoelkopf committed
17
18
    "word_perplexity": None,
    "byte_perplexity": None,
19
}
haileyschoelkopf's avatar
haileyschoelkopf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


def register_metric(name):
    # TODO: do we want to enforce a certain interface to registered metrics?
    def decorate(fn):
        assert (
            name not in METRIC_REGISTRY
        ), f"metric named '{name}' conflicts with existing registered metric!"

        METRIC_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_metric(name):

    try:
        return METRIC_REGISTRY[name]
    except KeyError:
        # TODO: change this print to logging?
        print(f"Could not find registered metric '{name}' in lm-eval, \
searching in HF Evaluate library...")
        try:
            metric_object = evaluate.load(name)
            return metric_object.compute
        except:
            raise Warning(
                "{} not found in the evaluate library!".format(name),
                "Please check https://huggingface.co/evaluate-metric",
            )


def register_aggregation(name):
54
    # TODO: should we enforce a specific interface to aggregation metrics?
haileyschoelkopf's avatar
haileyschoelkopf committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    def decorate(fn):
        assert (
            name not in AGGREGATION_REGISTRY
        ), f"aggregation named '{name}' conflicts with existing registered aggregation!"

        AGGREGATION_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_aggregation(name):

    try:
        return AGGREGATION_REGISTRY[name]
    except KeyError:
        raise Warning(
            "{} not a registered aggregation metric!".format(name),
        )


@register_aggregation("mean")
&'s avatar
& committed
77
78
79
80
def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
81
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
82
83
84
85
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
86
87
88
89
90
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
91
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
92
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
93
94


haileyschoelkopf's avatar
haileyschoelkopf committed
95
@register_aggregation("median")
&'s avatar
& committed
96
97
98
99
def median(arr):
    return arr[len(arr) // 2]


haileyschoelkopf's avatar
haileyschoelkopf committed
100
@register_metric("matthews_corrcoef")
&'s avatar
& committed
101
102
103
104
105
106
107
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


haileyschoelkopf's avatar
haileyschoelkopf committed
108
@register_metric("f1_score")
&'s avatar
& committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
125
        paragraph_id = doc["idx"]["paragraph"]
&'s avatar
& committed
126
        question_id = doc["idx"]["question"]
127
128
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []
&'s avatar
& committed
129
130
131

        gold_label = doc["label"] == 1

132
        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
&'s avatar
& committed
133
134
135
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

136

Leo Gao's avatar
Leo Gao committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
154
155
156
157
158
159
160
161
162
163

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


haileyschoelkopf's avatar
haileyschoelkopf committed
164
@register_metric("perplexity")
165
@register_aggregation("perplexity")
&'s avatar
& committed
166
167
168
169
def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
170
171
172
173
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

174

haileyschoelkopf's avatar
haileyschoelkopf committed
175
@register_metric("weighted_perplexity")
haileyschoelkopf's avatar
haileyschoelkopf committed
176
@register_aggregation("weighted_perplexity")
Leo Gao's avatar
Leo Gao committed
177
178
179
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

Fabrizio Milo's avatar
Fabrizio Milo committed
180

haileyschoelkopf's avatar
haileyschoelkopf committed
181
182
@register_metric("bits_per_byte")
@register_aggregation("bits_per_byte")
183
184
185
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
186

haileyschoelkopf's avatar
haileyschoelkopf committed
187
@register_metric("bleu")
&'s avatar
& committed
188
189
190
191
192
193
194
195
196
197
198
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
199
200
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
201
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
202
203
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
204

haileyschoelkopf's avatar
haileyschoelkopf committed
205
@register_metric("chrf")
&'s avatar
& committed
206
207
208
209
210
211
212
213
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
214
215
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
216
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
217
218
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
219

haileyschoelkopf's avatar
haileyschoelkopf committed
220
@register_metric("ter")
&'s avatar
& committed
221
222
223
224
225
226
227
228
229
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
230
231
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
232
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
233
234
235
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
236
237
238
239
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
240
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
241
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
242
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
243
244
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
245
246
247
248
249
250
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
251
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
252
        refs = list(refs)
&'s avatar
& committed
253
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
254
        refs = [[ref] for ref in refs]
&'s avatar
& committed
255
256
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
257

&'s avatar
& committed
258
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
259
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
260
        preds = list(preds)
&'s avatar
& committed
261
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
262
263
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
264
265

    return refs, preds
Leo Gao's avatar
Leo Gao committed
266

Fabrizio Milo's avatar
Fabrizio Milo committed
267

268
# stderr stuff
Leo Gao's avatar
Leo Gao committed
269

Fabrizio Milo's avatar
Fabrizio Milo committed
270

Leo Gao's avatar
Leo Gao committed
271
272
273
274
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
275

Leo Gao's avatar
Leo Gao committed
276
277
278
279
280
281
282
283
284
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
285

286
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
287
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
288

Leo Gao's avatar
Leo Gao committed
289
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
290
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
291
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
292
293
294
295
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
296
    res = []
297
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
298
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
299

Leo Gao's avatar
Leo Gao committed
300
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
301
302
    for bootstrap in tqdm(
        pool.imap(
303
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
304
305
306
307
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
308
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
309
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
310

Leo Gao's avatar
Leo Gao committed
311
    pool.close()
Leo Gao's avatar
Leo Gao committed
312
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
313
314


315
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
316
317
318
319
320
321
322
323
324
325
326
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
327
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
328

Fabrizio Milo's avatar
Fabrizio Milo committed
329
    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}
Leo Gao's avatar
Leo Gao committed
330

Leo Gao's avatar
Leo Gao committed
331
    return stderr.get(metric, None)
Jonathan Tow's avatar
Jonathan Tow committed
332
333
334
335


def yesno(x):
    if x:
Fabrizio Milo's avatar
Fabrizio Milo committed
336
        return "yes"
Jonathan Tow's avatar
Jonathan Tow committed
337
    else:
Fabrizio Milo's avatar
Fabrizio Milo committed
338
        return "no"