task.py 36.6 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

48
49
50

@dataclass
class TaskConfig(dict):
51
    # task naming/registry
52
    task: str = None
53
    group: Union[str, list] = None
54
55
56
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64
65
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
66
    template_aliases: str = None
67
68
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
69
    gold_alias: Union[Callable, str] = None
70
    use_prompt: str = None
71
    description: str = ""
72
73
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
74
    # runtime configuration options
75
76
    num_fewshot: int = 0
    batch_size: int = 1
77
    # scoring options
78
79
    metric_list: str = None
    output_type: str = "greedy_until"
80
    generation_kwargs: dict = None
81
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
82
    filter_list: Union[str, list] = None
83
84
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
85

lintangsutawika's avatar
lintangsutawika committed
86
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
87

88
89
90
91
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
92
93
94
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
95

96
97
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
98

99
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
100
                self.gold_alias = self.template_aliases + self.gold_alias
101

haileyschoelkopf's avatar
haileyschoelkopf committed
102
        if self.generation_kwargs:
103
104
105
            assert (
                self.output_type == "greedy_until"
            ), "passed `generation_kwargs`, but not using a generation request type!"
haileyschoelkopf's avatar
haileyschoelkopf committed
106
        elif self.output_type == "greedy_until":
107
108
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
109

haileyschoelkopf's avatar
haileyschoelkopf committed
110
111
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

112
113
114
    def __getitem__(self, item):
        return getattr(self, item)

115
    def to_dict(self):
116
117
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
118
        Used for dumping results alongside full task configuration
119

haileyschoelkopf's avatar
haileyschoelkopf committed
120
121
122
123
124
125
126
127
128
129
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
130
131
132
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
133
        return cfg_dict
134

135
136
137
138
139
140
141
142
143
144
145
146

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
147

148
149
150
151
152
153
154
155
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
191
        self._config = TaskConfig(**config) if config else TaskConfig()
192
193
194

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
195
            for name, components in self._config.get(
196
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
197
            ):
198
199
200
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
201
202
203
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
230
231
232
233
234
235
236
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

274
275
276
277
278
279
280
281
282
283
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
284
            eval_logger.warning(
285
                "has_training_docs and has_validation_docs are False"
286
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
287
            )
288
289
            return self.test_docs()

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

328
    def build_all_requests(self, limit=None, rank=None, world_size=None):
329
330
331
332
333
334
335
336
337
338
339
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
340
341
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
342
        ):
343
            # sample fewshot context #TODO: need to offset doc_id by rank now!
344
345
346
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
347

haileyschoelkopf's avatar
haileyschoelkopf committed
348
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
349
350
351
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
352
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
353
            )
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
379
            The number of times each instance in a dataset is inferred on. Defaults to 1,
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
415
416
417
418
419
420
421
422
423
424
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
445
446
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
447
        else:
lintangsutawika's avatar
lintangsutawika committed
448
449
450
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
451
452
453
454
455
456

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
457
458
459
460
461
462
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
463

464
    def dump_config(self):
465
        """Returns a dictionary representing the task's config.
466
467
468
469
470
471
472
473

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
        # (batch size, num_fewshot)
        return self._config.to_dict()

474
475
476

class ConfigurableTask(Task):

477
    VERSION = "Yaml"
478
    OUTPUT_TYPE = None
479
    CONFIG = None
480
481
482
483

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
484
        # Get pre-configured attributes
485
        self._config = self.CONFIG
486

487
488
        # Use new configurations if there was no preconfiguration
        if self._config is None:
489
            self._config = TaskConfig(**config)
490
491
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
492
            if config is not None:
493
                self._config.__dict__.update(config)
494

495
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
496
497
498
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
499
500

        if self._config.output_type is not None:
501
            assert self._config.output_type in ALL_OUTPUT_TYPES
502
503
            self.OUTPUT_TYPE = self._config.output_type

504
505
506
507
508
509
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

510
511
512
513
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
514

515
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
516
        if self._config.metric_list is None:
517
            # TODO: handle this in TaskConfig.__post_init__ ?
518
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
519
520
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
lintangsutawika's avatar
lintangsutawika committed
521
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
522
523
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
524
525
526
527
528
529
530
531
532
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
533
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
534

Lintang Sutawika's avatar
Lintang Sutawika committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
                if "fn" in metric_config:
                    self._metric_fn_list[metric_name] = metric_config["fn"]
                else:
                    try:
                        self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
                    except Exception:
                        eval_logger.warning(
                            f"Metric {metric_name} not found, "
                            "Searching from https://huggingface.co/evaluate-metric"
                        )
                        try:
                            metric_object = evaluate.load(metric_name)
                            self._metric_fn_list[metric_name] = metric_object
                            self._metric_fn_kwargs[metric_name] = kwargs

                        except Exception:
                            raise Warning(
                                "{} not found in the evaluate library!".format(
                                    metric_name
                                ),
                                "Please check https://huggingface.co/evaluate-metric",
                            )
                

559
                if "aggregation" in metric_config:
560
                    agg_name = metric_config["aggregation"]
561
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
562
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
563
564
565
566
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
567
                else:
568
569

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
570
                    metric_agg = get_default_aggregation(metric_name)
571
                    eval_logger.warning(
572
573
574
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
575
                    )
576
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
577

578
579
580
581
582
583
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
584
585
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
586
                        f"higher_is_better={is_higher_better(metric_name)}"
587
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
588
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
589

590
        self.download(self._config.dataset_kwargs)
591
592
593
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
594
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
595
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
596
597
598
599
600
601
602
603
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
604
605
606
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
607
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
608
        else:
609
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
610
611

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
612
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
613
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
614
615
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
616
617
618
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
619
620
621
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
622
            )
623

624
625
626
627
628
629
630
631
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

662
    def fewshot_docs(self):
663
        if self._config.fewshot_split is not None:
664
            return self.dataset[self._config.fewshot_split]
665
666
667
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
668
                    f"Task '{self._config.task}': "
669
670
671
672
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
673

674
675
676
677
678
679
680
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

681
682
683
684
685
686
687
688
689
690
691
692
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
693
694
695

        if self.prompt is not None:
            doc_to_text = self.prompt
696
697
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
698

699
700
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
701
        elif callable(doc_to_text):
702
703
704
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
705
        else:
706
            print(type(doc_to_text))
707
            raise TypeError
708
709

    def doc_to_target(self, doc):
710
711
712

        if self.prompt is not None:
            doc_to_target = self.prompt
713
714
715
        else:
            doc_to_target = self._config.doc_to_target

716
717
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
718
        elif callable(doc_to_target):
719
720
721
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
722
723
        else:
            raise TypeError
724

725
    def gold_alias(self, doc):
726
727
728
729
730
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
731
        if self._config.gold_alias is not None:
732
733
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
734
            return self.doc_to_target(doc)
735
736
737
738
739
740
741
742
743
744

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

745
746
    def construct_requests(self, doc, ctx, **kwargs):

747
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
748
            arguments = (ctx, self.doc_to_target(doc))
749
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
750
            arguments = (self.doc_to_target(doc),)
751
        elif self.OUTPUT_TYPE == "multiple_choice":
752
753
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
754
755
756
757
758
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
759
            request_list = [
760
761
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
762
                    doc=doc,
763
                    arguments=(ctx, " {}".format(choice)),
764
                    idx=i,
765
766
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
767
                for i, choice in enumerate(choices)
768
            ]
769
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
770
            if "acc_mutual_info" in self._metric_fn_list.keys():
771
772
773
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
774
                # here mutual info refers to calculating
775
776
777
778
779
780
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
781
                            doc=doc,
782
783
784
785
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
786
                        for i, choice in enumerate(choices)
787
788
789
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
790

791
        elif self.OUTPUT_TYPE == "greedy_until":
792
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
793
794

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
795
796
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
797
798
799

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
800
801
802
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

803
        result_dict = {}
804
        use_metric = list(self._metric_fn_list.keys())
805
806
807
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
808
809
810
811
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
812
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
813
            (loglikelihood,) = results
814
815
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
816
            return {
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
832
            }
833
        elif self.OUTPUT_TYPE == "multiple_choice":
834
835

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
836
837
838
839
840
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

841
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
842
843
844
845
846
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
847
848
            if (
                2 * len(choices) == len(lls)
849
                and "acc_mutual_info" in self._metric_fn_list.keys()
850
851
852
853
854
855
856
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
857

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
858
859
            pred = np.argmax(lls)

860
            acc = 1.0 if np.argmax(lls) == gold else 0.0
861
862
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
863
864

            result_dict = {
865
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
866
867
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
868
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
869
870
            }

871
            if "exact_match" in self._metric_fn_list.keys():
872
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
873
                is_greedy = is_greedy[gold]  # take value for the gold answer
874
875
                result_dict["exact_match"] = int(is_greedy)

876
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
877
878
879
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
880
881
882
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

883
884
885
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
886
                gold = self.gold_alias(doc)
887
888
889
            else:
                gold = self.doc_to_target(doc)

890
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
891
                _dict = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
892
893
894
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
895
                )
896

lintangsutawika's avatar
lintangsutawika committed
897
                result_dict = {**result_dict, **_dict}
898
        else:
lintangsutawika's avatar
lintangsutawika committed
899
900
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
901
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
902
            )
903
904
905
906
907
908
909

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
910
        return self._higher_is_better
911
912
913
914
915
916
917
918
919
920


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
921
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
922
923
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
924
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
925
                doc=doc,
926
                arguments=(ctx, " {}".format(choice)),
927
                idx=i,
928
929
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
930
931
            for i, choice in enumerate(doc["choices"])
        ]
932
933

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
934
935
936
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
961
class PerplexityTask(Task):
962
963
964
965
966
967
968
969
970
971

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
972
    def fewshot_context(self, doc, num_fewshot, rnd=None):
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1001
1002
1003
1004
1005
1006
1007
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1008
1009
1010

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1011
1012
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))