evaluator.py 28.8 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Lintang Sutawika's avatar
Lintang Sutawika committed
29
30
31
32
from lm_eval.tasks import (
    TaskManager,
    get_task_dict,
)
33
34
35
36
37
38
39
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
40

Fabrizio Milo's avatar
Fabrizio Milo committed
41

42
43
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
44
    from lm_eval.api.task import Task
45
46


47
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
48
49
def simple_evaluate(
    model,
50
51
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
52
    num_fewshot: Optional[int] = None,
53
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
54
55
56
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
57
58
59
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
60
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
61
62
63
64
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
65
66
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
67
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
68
    fewshot_as_multiturn: bool = False,
69
70
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
71
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
72
    predict_only: bool = False,
73
74
75
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
76
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
77
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
78
):
79
    """Instantiate and evaluate a model on a list of tasks.
80

81
82
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
83
84
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
85
        Ignored if `model` argument is a LM object.
86
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
87
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
88
89
    :param num_fewshot: int
        Number of examples in few-shot context
90
    :param batch_size: int or str, optional
91
        Batch size for model
92
93
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
94
    :param device: str, optional
95
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
96
97
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
98
99
100
101
102
103
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
104
105
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
106
    :param bootstrap_iters:
107
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
108
109
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
110
    :param write_out: bool
111
112
113
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
114
115
    :param system_instruction: str
        System instruction to be applied to the prompt
116
117
118
119
120
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
121
122
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
123
124
125
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
126
127
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
128
129
130
131
132
133
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
134
135
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
136

137
    :return
138
        Dictionary of results
139
    """
140
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
141
    start_date = time.time()
142

143
144
145
146
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

147
    seed_message = []
148
149
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
150
        seed_message.append(f"Setting random seed to {random_seed}")
151
152
153
        random.seed(random_seed)

    if numpy_random_seed is not None:
154
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
155
156
157
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
158
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
159
160
        torch.manual_seed(torch_random_seed)

161
162
163
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

164
165
166
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

167
168
    if tasks is None:
        tasks = []
169
170
171
172
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
173

lintangsutawika's avatar
lintangsutawika committed
174
175
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
176
        eval_logger.warning(
177
178
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
179
        )
lintangsutawika's avatar
lintangsutawika committed
180
181
182
        if gen_kwargs == "":
            gen_kwargs = None

183
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
184
        if model_args is None:
185
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
186
            model_args = ""
187

188
        if isinstance(model_args, dict):
189
190
191
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
192
193
194
195
196
197
198
199
200
201
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
202
203
204
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
205
206
207
208
209
210
211
212
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
213
    else:
214
        if not isinstance(model, lm_eval.api.model.LM):
215
216
217
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
218
        eval_logger.info("Using pre-initialized model")
219
        lm = model
220

haileyschoelkopf's avatar
haileyschoelkopf committed
221
    if use_cache is not None:
222
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
223
224
225
226
227
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
228
229
230
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
231
232
        )

233
234
235
    if task_manager is None:
        task_manager = TaskManager(verbosity)

Baber's avatar
Baber committed
236
237
238
239
    # TODO fix this. hack to get around the fact that we can't pass model to task config
    task_dict = get_task_dict(
        tasks, task_manager, metadata=simple_parse_args_string(model_args)
    )
Baber Abbasi's avatar
Baber Abbasi committed
240

Lintang Sutawika's avatar
Lintang Sutawika committed
241
242
243
244
245
246
247
248
249
250
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
251

252
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
292

Stephen Hogg's avatar
Stephen Hogg committed
293
    if check_integrity:
294
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
295

KonradSzafer's avatar
KonradSzafer committed
296
297
298
299
300
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
301
302
303
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
304
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
305
306
        )

307
308
309
310
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
311
312
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
313
        bootstrap_iters=bootstrap_iters,
314
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
315
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
316
317
318
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
319
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
320
        confirm_run_unsafe_code=confirm_run_unsafe_code,
321
    )
322

323
    if lm.rank == 0:
324
325
326
327
328
329
330
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

331
332
        # add info about the model and few shot config
        results["config"] = {
333
            "model": model_name,
334
335
            "model_args": model_args,
        }
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
351
352
353
354
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
355
356
            }
        )
357
        results["git_hash"] = get_git_commit_hash()
358
        results["date"] = start_date
359
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
360
        add_tokenizer_info(results, lm)  # additional info about tokenizer
361
362
363
        return results
    else:
        return None
364

Leo Gao's avatar
Leo Gao committed
365

366
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
367
def evaluate(
368
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
369
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
370
    limit: Optional[int] = None,
371
372
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
373
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
374
375
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
376
    system_instruction: Optional[str] = None,
377
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
378
    fewshot_as_multiturn: bool = False,
379
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
380
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
381
):
382
383
384
385
386
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
387
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
388
389
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
Hojin Lee's avatar
Hojin Lee committed
390
391
392
393
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
394
    :param bootstrap_iters:
395
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
396
    :param write_out: bool
397
398
399
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
400
401
    :param system_instruction: str
        System instruction to be applied to the prompt
402
403
404
405
406
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
407
408
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
409
410
411
412
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
413
414
415
    :return
        Dictionary of results
    """
416

417
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
418

419
420
421
422
423
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )

424
    # tracks all Instances/requests a model must generate output on.
425
    requests = defaultdict(list)
426
427
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
428
    padding_requests = defaultdict(int)
429

430
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
431
    eval_tasks = get_task_list(task_dict)
432
    if not log_samples:
433
        if not all(
434
435
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
436
437
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
438

Hojin Lee's avatar
Hojin Lee committed
439
440
441
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
442
    incompatible_tasks = []
443
444
    for task_output in eval_tasks:
        task: Task = task_output.task
445
446
447

        if getattr(lm, "MULTIMODAL", False) != getattr(task, "MULTIMODAL", False):
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
448
449
450
451
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
452
453
454
455
456
457
458
459
460
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
        else:
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which are text-only, but used a model type which only currently supports multimodal tasks."
            )
Hojin Lee's avatar
Hojin Lee committed
461
    # end validation check
462

Chenjie Luo's avatar
Chenjie Luo committed
463
464
465
    # Cache the limit arg.
    limit_arg = limit
    limits = []
466
467
468
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
469
470
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
471
472
473
474
475
476
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
477
            system_instruction=system_instruction,
478
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
479
            fewshot_as_multiturn=fewshot_as_multiturn,
480
481
482
483
484
485
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
486
        )
487
        eval_logger.debug(
488
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
489
490
        )
        if write_out:
491
            print_writeout(task)
492
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
493
494
495
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
496
497

        if lm.world_size > 1:
498
499
500
501
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
502
503
504
505
506
507
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
508
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
509
            numpad = max(gathered_item) - gathered_item[lm.rank]
510
511
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
512

513
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
514
515
    # execute each type of request
    for reqtype, reqs in requests.items():
516
        eval_logger.info(f"Running {reqtype} requests")
517
518
519
520
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
521

522
523
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
524
525
                cloned_reqs.extend([req] * req.repeats)

526
527
528
529
530
531
532
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

533
534
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
535

536
537
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
538
539
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
540
    for task_output, limit in zip(eval_tasks, limits):
541
        task = task_output.task
542
543
        task.apply_filters()

544
545
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
546
        # TODO: make it possible to use a different metric per filter
547
        # Pre-process task.instances to group by doc_id
548
        instances_by_doc_id = defaultdict(list)
549
550
551
552
553
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
554
        # iterate over different filters used
555
556
557
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
558
            )
559
            for doc_id, doc in doc_iterator:
560
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
561
                metrics = task.process_results(
562
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
563
                )
564
565
566
567
568
569
570
571
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
572
573
574
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
575
576
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
577
578
579
580
581
582
583
584
585
586
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
587
588
                    }
                    example.update(metrics)
589
                    task_output.logged_samples.append(example)
590
                for metric, value in metrics.items():
591
                    task_output.sample_metrics[(metric, filter_key)].append(value)
592

593
594
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
595
        # first gather logged samples across all ranks
596
597
598
599
600
601
602
603
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
604
                )
605

606
607
608
609
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
610

611
612
613
614
615
616
617
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
618
                )
619
620
621
622
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
623

624
    if RANK == 0:
625
626
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
627
628
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
629
630
631
632
633
634
635
636
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
637

638
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
639
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
655
656
657
658
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
659

Lintang Sutawika's avatar
Lintang Sutawika committed
660
661
662
663
664
665
666
667
668
669
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
670

671
        results_dict = {
672
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
673
674
675
676
677
678
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
679
680
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
681
            "n-shot": dict(sorted(num_fewshot.items())),
682
            "higher_is_better": dict(sorted(higher_is_better.items())),
683
684
685
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
686
687
688
689
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
690
                }
Chenjie Luo's avatar
Chenjie Luo committed
691
                for task_output, limit in zip(eval_tasks, limits)
692
            },
693
        }
694
695
696
697
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
698

699
700
    else:
        return None
701
702
703
704


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
705
706
707
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
708
709
710
    }

    return request_caching_args