metrics.py 7.58 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5

import numpy as np
import sacrebleu
Jonathan Tow's avatar
Jonathan Tow committed
6
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8
9
10
11
12
13


def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
14
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
15
16
17
18
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
19
20
21
22
23
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
24
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
25
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
26
27


&'s avatar
& committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def median(arr):
    return arr[len(arr) // 2]


def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
55
        paragraph_id = doc["idx"]["paragraph"]
&'s avatar
& committed
56
        question_id = doc["idx"]["question"]
57
58
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []
&'s avatar
& committed
59
60
61

        gold_label = doc["label"] == 1

62
        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
&'s avatar
& committed
63
64
65
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

66

Leo Gao's avatar
Leo Gao committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
98
99
100
101
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

102

Leo Gao's avatar
Leo Gao committed
103
104
105
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

Fabrizio Milo's avatar
Fabrizio Milo committed
106

107
108
109
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
110

&'s avatar
& committed
111
112
113
114
115
116
117
118
119
120
121
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
122
123
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
124
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
125
126
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
127
128
129
130
131
132
133
134
135

def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
136
137
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
138
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
139
140
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
141
142
143
144
145
146
147
148
149
150

def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
151
152
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
153
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
154
155
156
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
157
158
159
160
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
161
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
162
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
163
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
164
165
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
166
167
168
169
170
171
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
172
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
173
        refs = list(refs)
&'s avatar
& committed
174
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
175
        refs = [[ref] for ref in refs]
&'s avatar
& committed
176
177
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
178

&'s avatar
& committed
179
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
180
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
181
        preds = list(preds)
&'s avatar
& committed
182
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
183
184
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
185
186

    return refs, preds
Leo Gao's avatar
Leo Gao committed
187

Fabrizio Milo's avatar
Fabrizio Milo committed
188

189
# stderr stuff
Leo Gao's avatar
Leo Gao committed
190

Fabrizio Milo's avatar
Fabrizio Milo committed
191

Leo Gao's avatar
Leo Gao committed
192
193
194
195
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
196

Leo Gao's avatar
Leo Gao committed
197
198
199
200
201
202
203
204
205
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
206

207
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
208
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
209

Leo Gao's avatar
Leo Gao committed
210
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
211
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
212
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
213
214
215
216
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
217
    res = []
218
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
219
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
220

Leo Gao's avatar
Leo Gao committed
221
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
222
223
    for bootstrap in tqdm(
        pool.imap(
224
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
225
226
227
228
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
229
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
230
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
231

Leo Gao's avatar
Leo Gao committed
232
    pool.close()
Leo Gao's avatar
Leo Gao committed
233
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
234
235


236
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
237
238
239
240
241
242
243
244
245
246
247
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
248
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
249

Fabrizio Milo's avatar
Fabrizio Milo committed
250
    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}
Leo Gao's avatar
Leo Gao committed
251

Leo Gao's avatar
Leo Gao committed
252
    return stderr.get(metric, None)
Jonathan Tow's avatar
Jonathan Tow committed
253
254
255
256


def yesno(x):
    if x:
Fabrizio Milo's avatar
Fabrizio Milo committed
257
        return "yes"
Jonathan Tow's avatar
Jonathan Tow committed
258
    else:
Fabrizio Milo's avatar
Fabrizio Milo committed
259
        return "no"