evaluator.py 28.8 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Lintang Sutawika's avatar
Lintang Sutawika committed
29
30
31
32
from lm_eval.tasks import (
    TaskManager,
    get_task_dict,
)
33
34
35
36
37
38
from lm_eval.utils import (
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
39

Fabrizio Milo's avatar
Fabrizio Milo committed
40

41
42
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
43
    from lm_eval.api.task import Task
44

Lintang Sutawika's avatar
Lintang Sutawika committed
45
46
eval_logger = logging.getLogger(__name__)

47

48
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
49
50
def simple_evaluate(
    model,
51
52
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
53
    num_fewshot: Optional[int] = None,
54
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
55
56
57
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
58
59
60
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
61
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
62
63
64
65
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
66
67
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
68
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
69
    fewshot_as_multiturn: bool = False,
70
71
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
Lintang Sutawika's avatar
Lintang Sutawika committed
72
    verbostiy=None,
Baber Abbasi's avatar
Baber Abbasi committed
73
    predict_only: bool = False,
74
75
76
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
77
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
78
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
79
):
80
    """Instantiate and evaluate a model on a list of tasks.
81

82
83
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
84
85
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
86
        Ignored if `model` argument is a LM object.
87
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
88
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
89
90
    :param num_fewshot: int
        Number of examples in few-shot context
91
    :param batch_size: int or str, optional
92
        Batch size for model
93
94
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
95
    :param device: str, optional
96
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
97
98
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
99
100
101
102
103
104
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
105
106
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
107
    :param bootstrap_iters:
108
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
109
110
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
111
    :param write_out: bool
112
113
114
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
115
116
    :param system_instruction: str
        System instruction to be applied to the prompt
117
118
119
120
121
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
122
123
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
124
125
126
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Lintang Sutawika's avatar
Lintang Sutawika committed
127
128
    :param verbostiy: str
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
129
130
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
131
132
133
134
135
136
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
137
138
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
139

140
    :return
141
        Dictionary of results
142
    """
Lintang Sutawika's avatar
Lintang Sutawika committed
143
144
    if verbostiy is not None:
        lm_eval.setup_logging(verbosity=verbostiy)
145
    start_date = time.time()
146

147
148
149
150
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

151
    seed_message = []
152
153
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
154
        seed_message.append(f"Setting random seed to {random_seed}")
155
156
157
        random.seed(random_seed)

    if numpy_random_seed is not None:
158
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
159
160
161
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
162
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
163
164
        torch.manual_seed(torch_random_seed)

165
166
167
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

168
169
170
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

171
172
    if tasks is None:
        tasks = []
173
174
175
176
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
177

lintangsutawika's avatar
lintangsutawika committed
178
179
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
180
        eval_logger.warning(
181
182
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
183
        )
lintangsutawika's avatar
lintangsutawika committed
184
185
186
        if gen_kwargs == "":
            gen_kwargs = None

187
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
188
        if model_args is None:
189
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
190
            model_args = ""
191

192
        if isinstance(model_args, dict):
193
194
195
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
196
197
198
199
200
201
202
203
204
205
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
206
207
208
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
209
210
211
212
213
214
215
216
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
217
    else:
218
        if not isinstance(model, lm_eval.api.model.LM):
219
220
221
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
222
        eval_logger.info("Using pre-initialized model")
223
        lm = model
224

haileyschoelkopf's avatar
haileyschoelkopf committed
225
    if use_cache is not None:
226
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
227
228
229
230
231
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
232
233
234
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
235
236
        )

237
    if task_manager is None:
Lintang Sutawika's avatar
Lintang Sutawika committed
238
        task_manager = TaskManager()
239
240

    task_dict = get_task_dict(tasks, task_manager)
Baber Abbasi's avatar
Baber Abbasi committed
241

Lintang Sutawika's avatar
Lintang Sutawika committed
242
243
244
245
246
247
248
249
250
251
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
252

253
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
293

Stephen Hogg's avatar
Stephen Hogg committed
294
    if check_integrity:
295
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
296

KonradSzafer's avatar
KonradSzafer committed
297
298
299
300
301
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
302
303
304
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
305
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
306
307
        )

308
309
310
311
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
312
313
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
314
        bootstrap_iters=bootstrap_iters,
315
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
316
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
317
318
319
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Lintang Sutawika's avatar
Lintang Sutawika committed
320
        verbosity=verbostiy,
Hojin Lee's avatar
Hojin Lee committed
321
        confirm_run_unsafe_code=confirm_run_unsafe_code,
322
    )
Lintang Sutawika's avatar
Lintang Sutawika committed
323
324
    if verbostiy is not None:
        lm_eval.setup_logging(verbosity=verbostiy)
325

326
    if lm.rank == 0:
327
328
329
330
331
332
333
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

334
335
        # add info about the model and few shot config
        results["config"] = {
336
            "model": model_name,
337
338
            "model_args": model_args,
        }
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
354
355
356
357
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
358
359
            }
        )
360
        results["git_hash"] = get_git_commit_hash()
361
        results["date"] = start_date
362
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
363
        add_tokenizer_info(results, lm)  # additional info about tokenizer
364
365
366
        return results
    else:
        return None
367

Leo Gao's avatar
Leo Gao committed
368

369
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
370
def evaluate(
371
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
372
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
373
    limit: Optional[int] = None,
374
375
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
376
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
377
378
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
379
    system_instruction: Optional[str] = None,
380
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
381
    fewshot_as_multiturn: bool = False,
382
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
383
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
384
):
385
386
387
388
389
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
390
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
391
392
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
Hojin Lee's avatar
Hojin Lee committed
393
394
395
396
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
397
    :param bootstrap_iters:
398
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
399
    :param write_out: bool
400
401
402
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
403
404
    :param system_instruction: str
        System instruction to be applied to the prompt
405
406
407
408
409
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
410
411
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
412
413
414
415
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
416
417
418
    :return
        Dictionary of results
    """
419

420
421
422
423
424
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )

425
    # tracks all Instances/requests a model must generate output on.
426
    requests = defaultdict(list)
427
428
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
429
    padding_requests = defaultdict(int)
430

431
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
432
    eval_tasks = get_task_list(task_dict)
433
    if not log_samples:
434
        if not all(
435
436
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
437
438
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
439

Hojin Lee's avatar
Hojin Lee committed
440
441
442
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
443
    incompatible_tasks = []
444
445
    for task_output in eval_tasks:
        task: Task = task_output.task
446
447
448

        if getattr(lm, "MULTIMODAL", False) != getattr(task, "MULTIMODAL", False):
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
449
450
451
452
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
453
454
455
456
457
458
459
460
461
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
        else:
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which are text-only, but used a model type which only currently supports multimodal tasks."
            )
Hojin Lee's avatar
Hojin Lee committed
462
    # end validation check
463

Chenjie Luo's avatar
Chenjie Luo committed
464
465
466
    # Cache the limit arg.
    limit_arg = limit
    limits = []
467
468
469
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
470
471
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
472
473
474
475
476
477
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
478
            system_instruction=system_instruction,
479
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
480
            fewshot_as_multiturn=fewshot_as_multiturn,
481
482
483
484
485
486
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
487
        )
488
        eval_logger.debug(
489
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
490
491
        )
        if write_out:
492
            print_writeout(task)
493
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
494
495
496
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
497
498

        if lm.world_size > 1:
499
500
501
502
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
503
504
505
506
507
508
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
509
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
510
            numpad = max(gathered_item) - gathered_item[lm.rank]
511
512
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
513

514
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
515
516
    # execute each type of request
    for reqtype, reqs in requests.items():
517
        eval_logger.info(f"Running {reqtype} requests")
518
519
520
521
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
522

523
524
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
525
526
                cloned_reqs.extend([req] * req.repeats)

527
528
529
530
531
532
533
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

534
535
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
536

537
538
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
539
540
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
541
    for task_output, limit in zip(eval_tasks, limits):
542
        task = task_output.task
543
544
        task.apply_filters()

545
546
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
547
        # TODO: make it possible to use a different metric per filter
548
        # Pre-process task.instances to group by doc_id
549
        instances_by_doc_id = defaultdict(list)
550
551
552
553
554
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
555
        # iterate over different filters used
556
557
558
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
559
            )
560
            for doc_id, doc in doc_iterator:
561
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
562
                metrics = task.process_results(
563
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
564
                )
565
566
567
568
569
570
571
572
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
573
574
575
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
576
577
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
578
579
580
581
582
583
584
585
586
587
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
588
589
                    }
                    example.update(metrics)
590
                    task_output.logged_samples.append(example)
591
                for metric, value in metrics.items():
592
                    task_output.sample_metrics[(metric, filter_key)].append(value)
593

594
595
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
596
        # first gather logged samples across all ranks
597
598
599
600
601
602
603
604
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
605
                )
606

607
608
609
610
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
611

612
613
614
615
616
617
618
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
619
                )
620
621
622
623
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
624

625
    if RANK == 0:
626
627
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
628
629
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
630
631
632
633
634
635
636
637
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
638

639
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
640
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
656
657
658
659
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
660

Lintang Sutawika's avatar
Lintang Sutawika committed
661
662
663
664
665
666
667
668
669
670
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
671

672
        results_dict = {
673
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
674
675
676
677
678
679
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
680
681
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
682
            "n-shot": dict(sorted(num_fewshot.items())),
683
            "higher_is_better": dict(sorted(higher_is_better.items())),
684
685
686
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
687
688
689
690
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
691
                }
Chenjie Luo's avatar
Chenjie Luo committed
692
                for task_output, limit in zip(eval_tasks, limits)
693
            },
694
        }
695
696
697
698
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
699

700
701
    else:
        return None
702
703
704
705


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
706
707
708
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
709
710
711
    }

    return request_caching_args