evaluator.py 27.8 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Lintang Sutawika's avatar
Lintang Sutawika committed
29
30
31
32
from lm_eval.tasks import (
    TaskManager,
    get_task_dict,
)
33
34
35
36
37
38
39
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
40

Fabrizio Milo's avatar
Fabrizio Milo committed
41

42
43
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
44
    from lm_eval.api.task import Task
45
46


47
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
48
49
def simple_evaluate(
    model,
50
51
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
52
    num_fewshot: Optional[int] = None,
53
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
54
55
56
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
57
58
59
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
60
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
61
62
63
64
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
65
66
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
67
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
68
    fewshot_as_multiturn: bool = False,
69
70
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
71
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
72
    predict_only: bool = False,
73
74
75
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
76
    fewshot_random_seed: int = 1234,
Fabrizio Milo's avatar
Fabrizio Milo committed
77
):
78
    """Instantiate and evaluate a model on a list of tasks.
79

80
81
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
82
83
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
84
        Ignored if `model` argument is a LM object.
85
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
86
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
87
88
    :param num_fewshot: int
        Number of examples in few-shot context
89
    :param batch_size: int or str, optional
90
        Batch size for model
91
92
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
93
    :param device: str, optional
94
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
95
96
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
97
98
99
100
101
102
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
103
104
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
105
    :param bootstrap_iters:
106
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
107
108
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
109
    :param write_out: bool
110
111
112
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
113
114
    :param system_instruction: str
        System instruction to be applied to the prompt
115
116
117
118
119
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
120
121
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
122
123
124
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
125
126
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
127
128
129
130
131
132
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
133
134
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
135

136
    :return
137
        Dictionary of results
138
    """
139
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
140
    start_date = time.time()
141

142
143
144
145
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

146
    seed_message = []
147
148
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
149
        seed_message.append(f"Setting random seed to {random_seed}")
150
151
152
        random.seed(random_seed)

    if numpy_random_seed is not None:
153
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
154
155
156
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
157
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
158
159
        torch.manual_seed(torch_random_seed)

160
161
162
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

163
164
165
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

166
167
    if tasks is None:
        tasks = []
168
169
170
171
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
172

lintangsutawika's avatar
lintangsutawika committed
173
174
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
175
        eval_logger.warning(
176
177
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
178
        )
lintangsutawika's avatar
lintangsutawika committed
179
180
181
        if gen_kwargs == "":
            gen_kwargs = None

182
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
183
        if model_args is None:
184
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
185
            model_args = ""
186

187
        if isinstance(model_args, dict):
188
189
190
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
191
192
193
194
195
196
197
198
199
200
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
201
202
203
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
204
205
206
207
208
209
210
211
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
212
    else:
213
        if not isinstance(model, lm_eval.api.model.LM):
214
215
216
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
217
        eval_logger.info("Using pre-initialized model")
218
        lm = model
219

haileyschoelkopf's avatar
haileyschoelkopf committed
220
    if use_cache is not None:
221
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
222
223
224
225
226
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
227
228
229
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
230
231
        )

232
233
234
235
    if task_manager is None:
        task_manager = TaskManager(verbosity)

    task_dict = get_task_dict(tasks, task_manager)
Baber Abbasi's avatar
Baber Abbasi committed
236

Lintang Sutawika's avatar
Lintang Sutawika committed
237
238
239
240
241
242
243
244
245
246
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
247

248
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
288

Stephen Hogg's avatar
Stephen Hogg committed
289
    if check_integrity:
290
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
291

KonradSzafer's avatar
KonradSzafer committed
292
293
294
295
296
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
297
298
299
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
300
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
301
302
        )

303
304
305
306
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
307
308
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
309
        bootstrap_iters=bootstrap_iters,
310
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
311
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
312
313
314
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
315
        verbosity=verbosity,
316
    )
317

318
    if lm.rank == 0:
319
320
321
322
323
324
325
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

326
327
        # add info about the model and few shot config
        results["config"] = {
328
            "model": model_name,
329
330
            "model_args": model_args,
        }
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
346
347
348
349
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
350
351
            }
        )
352
        results["git_hash"] = get_git_commit_hash()
353
        results["date"] = start_date
354
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
355
        add_tokenizer_info(results, lm)  # additional info about tokenizer
356
357
358
        return results
    else:
        return None
359

Leo Gao's avatar
Leo Gao committed
360

361
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
362
def evaluate(
363
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
364
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
365
    limit: Optional[int] = None,
366
367
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
368
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
369
370
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
371
    system_instruction: Optional[str] = None,
372
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
373
    fewshot_as_multiturn: bool = False,
374
    verbosity: str = "INFO",
Fabrizio Milo's avatar
Fabrizio Milo committed
375
):
376
377
378
379
380
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
381
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
382
383
384
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
385
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
386
    :param write_out: bool
387
388
389
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
390
391
    :param system_instruction: str
        System instruction to be applied to the prompt
392
393
394
395
396
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
397
398
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
399
400
401
    :return
        Dictionary of results
    """
402

403
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
404

405
406
407
408
409
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )

410
    # tracks all Instances/requests a model must generate output on.
411
    requests = defaultdict(list)
412
413
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
414
    padding_requests = defaultdict(int)
415

416
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
417
    eval_tasks = get_task_list(task_dict)
418
    if not log_samples:
419
        if not all(
420
421
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
422
423
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
424
425
426

    # validation check: are we running multimodal task <-> non-multimodal model class, or vice-versa.
    incompatible_tasks = []
427
428
    for task_output in eval_tasks:
        task: Task = task_output.task
429
430
431
432
433
434
435
436
437
438
439
440
441
442

        if getattr(lm, "MULTIMODAL", False) != getattr(task, "MULTIMODAL", False):
            incompatible_tasks.append(task_output.task_name)
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
        else:
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which are text-only, but used a model type which only currently supports multimodal tasks."
            )
    # end multimodality validation check

Chenjie Luo's avatar
Chenjie Luo committed
443
444
445
    # Cache the limit arg.
    limit_arg = limit
    limits = []
446
447
448
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
449
450
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
451
452
453
454
455
456
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
457
            system_instruction=system_instruction,
458
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
459
            fewshot_as_multiturn=fewshot_as_multiturn,
460
461
462
463
464
465
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
466
        )
467
        eval_logger.debug(
468
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
469
470
        )
        if write_out:
471
            print_writeout(task)
472
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
473
474
475
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
476
477

        if lm.world_size > 1:
478
479
480
481
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
482
483
484
485
486
487
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
488
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
489
            numpad = max(gathered_item) - gathered_item[lm.rank]
490
491
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
492

493
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
494
495
    # execute each type of request
    for reqtype, reqs in requests.items():
496
        eval_logger.info(f"Running {reqtype} requests")
497
498
499
500
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
501

502
503
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
504
505
                cloned_reqs.extend([req] * req.repeats)

506
507
508
509
510
511
512
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

513
514
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
515

516
517
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
518
519
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
520
    for task_output, limit in zip(eval_tasks, limits):
521
        task = task_output.task
522
523
        task.apply_filters()

524
525
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
526
        # TODO: make it possible to use a different metric per filter
527
        # Pre-process task.instances to group by doc_id
528
        instances_by_doc_id = defaultdict(list)
529
530
531
532
533
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
534
        # iterate over different filters used
535
536
537
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
538
            )
539
            for doc_id, doc in doc_iterator:
540
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
541
                metrics = task.process_results(
542
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
543
                )
544
545
546
547
548
549
550
551
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
552
553
554
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
555
556
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
557
558
559
560
561
562
563
564
565
566
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
567
568
                    }
                    example.update(metrics)
569
                    task_output.logged_samples.append(example)
570
                for metric, value in metrics.items():
571
                    task_output.sample_metrics[(metric, filter_key)].append(value)
572

573
574
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
575
        # first gather logged samples across all ranks
576
577
578
579
580
581
582
583
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
584
                )
585

586
587
588
589
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
590

591
592
593
594
595
596
597
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
598
                )
599
600
601
602
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
603

604
    if RANK == 0:
605
606
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
607
608
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
609
610
611
612
613
614
615
616
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
617

618
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
619
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
635
636
637
638
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
639

Lintang Sutawika's avatar
Lintang Sutawika committed
640
641
642
643
644
645
646
647
648
649
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
650

651
        results_dict = {
652
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
653
654
655
656
657
658
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
659
660
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
661
            "n-shot": dict(sorted(num_fewshot.items())),
662
            "higher_is_better": dict(sorted(higher_is_better.items())),
663
664
665
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
666
667
668
669
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
670
                }
Chenjie Luo's avatar
Chenjie Luo committed
671
                for task_output, limit in zip(eval_tasks, limits)
672
            },
673
        }
674
675
676
677
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
678

679
680
    else:
        return None
681
682
683
684


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
685
686
687
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
688
689
690
    }

    return request_caching_args