evaluator.py 9.92 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Leo Gao's avatar
Leo Gao committed
3
import random
Leo Gao's avatar
Leo Gao committed
4
import lm_eval.metrics
5
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
import numpy as np
9
from lm_eval.utils import positional_deprecated
10

11

12
@positional_deprecated
13
def simple_evaluate(model, model_args=None, tasks=[],
14
                    num_fewshot=0, batch_size=None, device=None,
15
                    no_cache=False, limit=None, bootstrap_iters=100000,
16
                    description_dict=None):
17
    """Instantiate and evaluate a model on a list of tasks.
18

19
20
21
22
23
24
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
        String arguments for each model class, see LM.create_from_arg_string. 
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
25
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
26
27
28
29
30
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
31
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
32
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
33
        Whether or not to cache
34
35
36
37
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
38
    :param description_dict: dict[str, str]
39
        Dictionary of custom task descriptions of the form: `task_name: description` 
40
    :return
41
        Dictionary of results
42
    """
43
44
45
    random.seed(1234)
    np.random.seed(1234)

46
47
48
49
50
51
52
53
54
55
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
        if model_args is None: model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(model_args, {
            'batch_size': batch_size, 'device': device
        })
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
56
57

    if not no_cache:
58
59
60
        lm = lm_eval.base.CachingLM(
            lm, 'lm_cache/' + model + '_' + model_args.replace('=', '-').replace(',', '_').replace('/', '-') + '.db'
        )
61
    
62
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
63

64
65
66
67
68
69
70
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
        description_dict=description_dict
    )
71
72
73
74
75
76
77
78
79
80

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
81
82
        "bootstrap_iters": bootstrap_iters,
        "description_dict": description_dict
83
84
85
    }

    return results
Leo Gao's avatar
Leo Gao committed
86
87


88
@positional_deprecated
Leo Gao's avatar
Leo Gao committed
89
def evaluate(lm, task_dict, provide_description=None, num_fewshot=0, limit=None, bootstrap_iters=100000, description_dict=None):
90
91
92
93
94
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
95
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
96
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
97
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
98
99
100
101
102
103
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
104
    :param description_dict: dict[str, str]
105
        Dictionary of custom task descriptions of the form: `task_name: description` 
106
107
108
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
109
110
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

111
112
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
113
114
115
    if provide_description is not None:
        # nudge people to not specify it at all
        print("WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict")
116
117
118
119
120
121

    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
        if(task.has_validation_docs() or task.has_test_docs())
    ]
Leo Gao's avatar
Leo Gao committed
122
123

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
124
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
125
126
127
128

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

129
130
131
132
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
133
134
135
136

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

137
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
138
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
139
        versions[task_name] = task.VERSION
140
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
141
142
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
143
            task_doc_func = task.test_docs
Leo Gao's avatar
Leo Gao committed
144
145
        elif task.has_validation_docs():
            task_doc_func = task.validation_docs
146
147
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
148

Leo Gao's avatar
Leo Gao committed
149
150
151
152
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
153
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
154

155
156
        description = description_dict[task_name] if description_dict and task_name in description_dict else ""

Leo Gao's avatar
Leo Gao committed
157
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
Leo Gao's avatar
Leo Gao committed
158
159
160
161
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
                doc=doc,
                num_fewshot=num_fewshot,
162
163
                rnd=rnd,
                description=description
Leo Gao's avatar
Leo Gao committed
164
165
            )
            reqs = task.construct_requests(doc, ctx)
166
167
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
168
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
169
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
170
171
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
172
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
173
174
175
176
177
178

    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
179
180
181
182
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
183

Leo Gao's avatar
Leo Gao committed
184
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        resps = getattr(lm, reqtype)([req.args for req in reqs])
        resps = [x if req.index is None else x[req.index] for x, req in zip(resps, reqs)]

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
    
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
    
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
        results[task_name][metric] = task.aggregation()[metric](items)
Leo Gao's avatar
Leo Gao committed
209

210
211
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
212
213
214
215
        stderr = lm_eval.metrics.stderr_for_metric(
            metric=task.aggregation()[metric],
            bootstrap_iters=min(bootstrap_iters, 1000) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters,
        )
Leo Gao's avatar
Leo Gao committed
216
217
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Leo Gao's avatar
Leo Gao committed
218
    
Leo Gao's avatar
Leo Gao committed
219
    return {
220
221
        "results": dict(results),
        "versions": dict(versions)
Leo Gao's avatar
Leo Gao committed
222
    }
223
224
225


def make_table(result_dict):
226
    """Generate table of results."""
227
228
229
230
231
232
233
234
235
236
237
238
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
239
240
            if m.endswith("_stderr"):
                continue
241
242
243
244
245
246
247
248
249
250
251
252
253
254

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
                values.append([k, version, m, '%.4f' % v, '±', '%.4f' % se])
            else:
                values.append([k, version, m, '%.4f' % v, '', ''])
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

255
    return md_writer.dumps()