glue.py 12.3 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted.

Jason Phang's avatar
checkin  
Jason Phang committed
3
import numpy as np
Jason Phang's avatar
Jason Phang committed
4
from scipy.stats import pearsonr, spearmanr
Jason Phang's avatar
checkin  
Jason Phang committed
5
from sklearn.metrics import f1_score, matthews_corrcoef
Jason Phang's avatar
Jason Phang committed
6
from tqdm import auto as tqdm_lib
sdtblck's avatar
sdtblck committed
7
from . common import HFTask, simple_accuracy_metric, yesno
Jason Phang's avatar
checkin  
Jason Phang committed
8

Jason Phang's avatar
Jason Phang committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
def get_accuracy_and_f1(preds, golds):
    golds = np.array(golds)
    preds = np.array(preds)
    acc = float((preds == golds).mean())
    f1 = float(f1_score(y_true=golds, y_pred=preds))
    minor = {
        "acc": acc,
        "f1": f1,
        "acc_and_f1": (acc + f1) / 2,
    }
    return {
        "major": minor["acc_and_f1"],
        "minor": minor,
        "higher_is_better": True,
    }


sdtblck's avatar
sdtblck committed
26
class CoLA(HFTask):
sdtblck's avatar
sdtblck committed
27
28
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
29
    
Jason Phang's avatar
checkin  
Jason Phang committed
30
31
32
33
34
35
36
37
38
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jason Phang's avatar
Jason Phang committed
39
40
41
    def fewshot_description(self):
        return "Does this sentence make sense?:\tTrue or False?"

Jason Phang's avatar
checkin  
Jason Phang committed
42
    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
43
        text = "Sentence: {}\nAnswer:".format(doc["sentence"])
Jason Phang's avatar
checkin  
Jason Phang committed
44
45
46
47
        if include_target:
            text += " {}".format({1: "True", 0: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
48
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
49
50
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
51
52
53
54
55
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
56
            )
Jason Phang's avatar
Jason Phang committed
57
            preds.append(lm.loglikelihood(ctx, ' True') > lm.loglikelihood(ctx, ' False'))
Jason Phang's avatar
checkin  
Jason Phang committed
58
59
60
61
62
63
64
65
66
67
        golds = np.array(golds)
        preds = np.array(preds)
        mcc = float(matthews_corrcoef(y_true=golds, y_pred=preds))
        return {
            "major": mcc,
            "minor": {"mcc": mcc},
            "higher_is_better": True,
        }


sdtblck's avatar
sdtblck committed
68
class MNLI(HFTask):
sdtblck's avatar
sdtblck committed
69
70
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
71

Jason Phang's avatar
checkin  
Jason Phang committed
72
73
74
75
76
77
78
79
80
81
82
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def validation_docs(self):
        if self.has_validation_docs():
sdtblck's avatar
sdtblck committed
83
            return self.data["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
84
85
86

    def test_docs(self):
        if self.has_test_docs():
sdtblck's avatar
sdtblck committed
87
            return self.data["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
88
89
90

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
91
92
            doc["premise"],
            doc["hypothesis"],
Jason Phang's avatar
checkin  
Jason Phang committed
93
94
95
96
97
98
99
100
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
101
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
102
103
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
104
105
106
107
108
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
109
            )
Jason Phang's avatar
Jason Phang committed
110
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
111
112
113
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
114
115
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
116
117
118
        return simple_accuracy_metric(preds=preds, golds=golds)


Jason Phang's avatar
Jason Phang committed
119
120
121
122
123
124
125
126
127
128
129
class MNLIMismatched(MNLI):

    def validation_docs(self):
        if self.has_validation_docs():
            return self.data["validation_mismatched"]

    def test_docs(self):
        if self.has_test_docs():
            return self.data["test_mismatched"]


sdtblck's avatar
sdtblck committed
130
class MRPC(HFTask):
sdtblck's avatar
sdtblck committed
131
132
    DATASET_PATH = "glue"
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
164
            preds.append(lm.loglikelihood(ctx, 'yes') > lm.loglikelihood(ctx, 'no'))
Jason Phang's avatar
Jason Phang committed
165
166
        return get_accuracy_and_f1(preds=preds, golds=golds)

167
      
sdtblck's avatar
sdtblck committed
168
class RTE(HFTask):
sdtblck's avatar
sdtblck committed
169
170
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue or False?\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
seed  
Jason Phang committed
187
188
            # 0 = entailment
            # 1 = not_entailment
Jason Phang's avatar
Jason Phang committed
189
            text += " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
190
191
        return text

Jason Phang's avatar
Jason Phang committed
192
193
194
195
196
197
198
199
200
    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
201
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
202
203
204
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
205
class QNLI(HFTask):
sdtblck's avatar
sdtblck committed
206
207
    DATASET_PATH = "glue"
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
208
209
210
211
212
213
214
215
216
217
218

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
219
        text = "question:\t{}\nresponse:\t{}\nDoes this answer the question, Yes or No?:".format(
Jason Phang's avatar
Jason Phang committed
220
221
222
223
224
225
            doc["question"],
            doc["sentence"],
        )
        if include_target:
            # True = entailment
            # False = not entailment
Jason Phang's avatar
Jason Phang committed
226
            text += " {}".format({0: "Yes", 1: "No"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
227
228
229
230
231
232
233
234
235
236
237
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
238
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
239
240
241
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
242
class QQP(HFTask):
sdtblck's avatar
sdtblck committed
243
244
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
245
246
247
248
249
250
251
252
253
254
255

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
Jason Phang's avatar
Jason Phang committed
256
        return "Indicate if both questions ask the same thing."
Jason Phang's avatar
Jason Phang committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

    def doc_to_text(self, doc, include_target=True):
        text = "question 1:\t{}\nquestion 2:\t{}\nanswer:".format(
            doc["question1"],
            doc["question2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return get_accuracy_and_f1(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
280
class STSB(HFTask):
sdtblck's avatar
sdtblck committed
281
282
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing from a scale of 0-5, " \
           "where 5 means identical and 0 means unrelated."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
Jason Phang committed
303
            text += " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
304
305
306
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
307
308
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
309
310
311
312
313
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
314
            )
Jason Phang's avatar
Jason Phang committed
315
316
317
318
            output = lm.generate(context=ctx, max_gen_length=5).strip()
            first_element = output.split()[0]
            if first_element.isnumeric():
                pred = max(min(float(first_element), 5.0), 0.0)
Jason Phang's avatar
checkin  
Jason Phang committed
319
            else:
Jason Phang's avatar
Jason Phang committed
320
                pred = 2.5
Jason Phang's avatar
Jason Phang committed
321
            import pdb; pdb.set_trace()
Jason Phang's avatar
Jason Phang committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
            preds.append(pred)
        pearson_corr = float(pearsonr(preds, golds)[0])
        spearman_corr = float(spearmanr(preds, golds)[0])
        minor = {
            "pearson": pearson_corr,
            "spearmanr": spearman_corr,
            "corr": (pearson_corr + spearman_corr) / 2,
        }
        return {
            "major": minor["corr"],
            "minor": minor,
            "higher_is_better": True,
        }


sdtblck's avatar
sdtblck committed
337
class SST(HFTask):
sdtblck's avatar
sdtblck committed
338
339
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"
Jason Phang's avatar
Jason Phang committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if each sentence is Positive or Negative."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence:\t{}\t\nanswer:".format(
            doc["sentence"],
        )
        if include_target:
            text += " {}".format({1: "Positive", 0: "Negative"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' Positive') > lm.loglikelihood(ctx, ' Negative'))
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
374
class WNLI(HFTask):
sdtblck's avatar
sdtblck committed
375
376
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"
377
    
Jason Phang's avatar
Jason Phang committed
378
379
380
381
382
383
384
385
386
387
388
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
389
390
            doc["sentence1"],
            doc["sentence2"],
Jason Phang's avatar
Jason Phang committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
409
410
411
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
412
413
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
414
        return simple_accuracy_metric(preds=preds, golds=golds)