flash_bwd_launch_template.h 16.4 KB
Newer Older
1
2
3
/******************************************************************************
 * Copyright (c) 2024, Tri Dao.
 ******************************************************************************/
Tri Dao's avatar
Tri Dao committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#pragma once

#include <ATen/cuda/CUDAContext.h>

#include "static_switch.h"
#include "flash.h"
#include "flash_bwd_kernel.h"

template<bool Clear_dQaccum=true, typename Kernel_traits>
__global__ void flash_bwd_dot_do_o_kernel(Flash_bwd_params params) {
    flash::compute_dot_do_o<Clear_dQaccum, Kernel_traits>(params);
}

template<typename Kernel_traits>
__global__ void flash_bwd_clear_dkvaccum_kernel(Flash_bwd_params params) {
    flash::clear_dKVaccum<Kernel_traits>(params);
}

23
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K>
Tri Dao's avatar
Tri Dao committed
24
__global__ void flash_bwd_dq_dk_dv_loop_kernel(Flash_bwd_params params) {
25
    flash::compute_dq_dk_dv<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K>(params);
Tri Dao's avatar
Tri Dao committed
26
27
}

28
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K>
Tri Dao's avatar
Tri Dao committed
29
__global__ void flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel(Flash_bwd_params params) {
Tri Dao's avatar
Tri Dao committed
30
    static_assert(!(Is_causal && Is_local));  // If Is_local is true, Is_causal should be false
31
    flash::compute_dq_dk_dv_seqk_parallel<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K>(params);
Tri Dao's avatar
Tri Dao committed
32
33
34
}

template<typename Kernel_traits>
35
36
__global__ void flash_bwd_convert_dq_kernel(Flash_bwd_params params, const int nsplits) {
    flash::convert_dQ<Kernel_traits>(params, nsplits);
Tri Dao's avatar
Tri Dao committed
37
38
39
40
41
42
43
44
45
46
47
48
}

template<typename Kernel_traits>
__global__ void flash_bwd_convert_dkv_kernel(Flash_bwd_params params) {
    flash::convert_dKV<Kernel_traits>(params);
}

template<typename Kernel_traits, bool Is_dropout>
void run_flash_bwd_seqk_parallel(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
    const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
    dim3 grid_m(num_m_block, params.b, params.h);
    const int num_n_block = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
49
50
51
52
53
54
    int gridDimx = num_n_block;
    if (params.deterministic) {
        auto dprops = at::cuda::getCurrentDeviceProperties();
        gridDimx = (dprops->multiProcessorCount + params.b * params.h - 1) / (params.b * params.h);
    }
    dim3 grid_n(gridDimx, params.b, params.h);
Tri Dao's avatar
Tri Dao committed
55

56
57
58
59
60
    if (!params.deterministic) {
        flash_bwd_dot_do_o_kernel<true, Kernel_traits><<<grid_m, Kernel_traits::kNThreads, 0, stream>>>(params);
    } else {
        flash_bwd_dot_do_o_kernel<false, Kernel_traits><<<grid_m, Kernel_traits::kNThreads, 0, stream>>>(params);
    }
Tri Dao's avatar
Tri Dao committed
61
62
    C10_CUDA_KERNEL_LAUNCH_CHECK();

63
64
65
    // We want to specialize to is_even_MN and not just is_even_M, since in the case where N is not
    // a multiple of kBlockN, we'll need to apply mask in the loop.
    const bool is_even_MN = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_q % Kernel_traits::kBlockM == 0 && params.seqlen_k % Kernel_traits::kBlockN == 0;
Tri Dao's avatar
Tri Dao committed
66
67
68
    const bool is_even_K = params.d == Kernel_traits::kHeadDim;
    constexpr int smem_size_dq_dk_dv = Kernel_traits::kSmemSize1colblock;
    // printf("smem_size_dq_dk_dv = %d\n", smem_size_dq_dk_dv);
69
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
70
        BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
Tri Dao's avatar
Tri Dao committed
71
            BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
72
                BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !params.is_causal, Is_local, [&] {
73
                    BOOL_SWITCH(params.alibi_slopes_ptr != nullptr, Has_alibi, [&] {
74
75
76
                        // If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
                        // If head dim > 128, set IsEvenMNConst to false to reduce number of templates
                        // If Is_local, set Is_causal to false
77
                        auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, Is_dropout, Is_causal, Is_local && !Is_causal, Has_alibi, IsEvenMNConst && IsEvenKConst && !Is_local && Kernel_traits::kHeadDim <= 128, IsEvenKConst>;
78
                        // auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, false, Is_causal, false, false, true, true>;
79
80
81
82
83
84
85
                        if (smem_size_dq_dk_dv >= 48 * 1024)  {
                            C10_CUDA_CHECK(cudaFuncSetAttribute(
                                kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size_dq_dk_dv));
                        }
                        kernel<<<grid_n, Kernel_traits::kNThreads, smem_size_dq_dk_dv, stream>>>(params);
                        C10_CUDA_KERNEL_LAUNCH_CHECK();
                    });
Tri Dao's avatar
Tri Dao committed
86
                });
Tri Dao's avatar
Tri Dao committed
87
88
89
90
91
            });
        });
    });

    auto kernel_dq = &flash_bwd_convert_dq_kernel<Kernel_traits>;
92
    if (Kernel_traits::kSmemdQSize >= 48 * 1024)  {
Tri Dao's avatar
Tri Dao committed
93
94
95
        C10_CUDA_CHECK(cudaFuncSetAttribute(
            kernel_dq, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::kSmemdQSize));
    }
96
    kernel_dq<<<grid_m, Kernel_traits::kNThreads, Kernel_traits::kSmemdQSize, stream>>>(params, !params.deterministic ? 1 : gridDimx);
Tri Dao's avatar
Tri Dao committed
97
98
99
100
101
102
    C10_CUDA_KERNEL_LAUNCH_CHECK();
}

template<typename Kernel_traits, bool Is_dropout>
void run_flash_bwd(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
    if (configure) return;
103
    run_flash_bwd_seqk_parallel<Kernel_traits, Is_dropout>(params, stream, configure);
Tri Dao's avatar
Tri Dao committed
104
105
106
107
}

template<typename T>
void run_mha_bwd_hdim32(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
108
    constexpr static int Headdim = 32;
Tri Dao's avatar
Tri Dao committed
109
110
111
112
113
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
114
115
116
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 2 * ((3 * 128 + 2 * 128) * Headdim + 2 * 128 * 128)) { // 104 KB
            if constexpr(!Is_dropout) {  // We can afford more registers to keep V in registers
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
            } else {
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
            }
        } else {  // 96 KB
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
        }
    });
}

template<typename T>
void run_mha_bwd_hdim64(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
132
    constexpr static int Headdim = 64;
Tri Dao's avatar
Tri Dao committed
133
134
135
136
137
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
138
139
140
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        // Changing AtomLayoutMdQ from 2 to 4 takes the same time
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, false, false, T>>(params, stream, configure);
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, true, false, T>>(params, stream, configure);
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 2, 4, 4, false, false, T>>(params, stream, configure);
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, false, false, T>, Is_dropout>(params, stream, configure);
        // This is slightly faster. We want to split M more so we need fewer registers to store LSE.
        if (max_smem_per_block >= 144 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
            // This has a lot of register spilling
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
        } else {
            // if (params.h == params.h_k) {
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, false, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, true, false, T>, Is_dropout>(params, stream, configure);
            // } else {
            // }
        }
    });
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, true, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 4, 2, 2, 2, true, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 32, 128, 4, 1, 4, 1, false, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 16, 128, 4, 1, 4, 1, false, false, T>>(params, stream, configure);
    // M=128, N=64 is quite slow, I think because we need to read/write dQaccum twice as many times
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 2, 2, 2, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 4, false, T>>(params, stream, configure);

    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 4, 4, 2, 4, false, false, T>>(params, stream, configure);
}

template<typename T>
void run_mha_bwd_hdim96(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
177
    constexpr static int Headdim = 96;
Tri Dao's avatar
Tri Dao committed
178
179
180
181
182
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
183
184
185
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
186
187
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
188
189
        if (max_smem_per_block >= 116 * 1024) {
            if constexpr(!Is_dropout) {  // 92KB
Tri Dao's avatar
Tri Dao committed
190
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
191
192
193
            } else {  // 116 KB
                // This is faster for dropout since we don't have many registers to spare
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
Tri Dao's avatar
Tri Dao committed
194
            }
195
196
197
        } else {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
        }
Tri Dao's avatar
Tri Dao committed
198
199
200
201
202
    });
}

template<typename T>
void run_mha_bwd_hdim128(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
203
    constexpr static int Headdim = 128;
Tri Dao's avatar
Tri Dao committed
204
205
206
207
208
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
209
210
211
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
212
213
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 32, 128, 8, 2, 2, 2, false, false, T>>(params, stream, configure);
        // This is faster, in the case of sequence-parallel bwd (where we need fewer registers).
        // Out of these three, the 2nd one is slightly faster (2% faster than the first). Idk why.
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 2, 2, false, false, T>>(params, stream, configure);
        if (max_smem_per_block >= 144 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, false, false, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd_seqk_parallel<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd_seqk_parallel<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, true, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, true, false, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 2, true, false, T>, Is_dropout>(params, stream, configure);
        } else {
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, true, false, T>, Is_dropout>(params, stream, configure);
        }
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>>(params, stream, configure);
Tri Dao's avatar
Tri Dao committed
230

231
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 4, 4, false, false, T>>(params, stream, configure);
Tri Dao's avatar
Tri Dao committed
232
233
234
235
236
    });
}

template<typename T>
void run_mha_bwd_hdim160(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
237
    constexpr static int Headdim = 160;
Tri Dao's avatar
Tri Dao committed
238
239
240
241
242
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
243
244
245
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
246
247
248
249
250
251
252
253
254
255
256
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 116 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
        } else {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, true, T>, Is_dropout>(params, stream, configure);
        }
    });
}

template<typename T>
void run_mha_bwd_hdim192(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
257
    constexpr static int Headdim = 192;
Tri Dao's avatar
Tri Dao committed
258
259
260
261
262
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
263
264
265
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
266
267
268
269
270
271
272
273
274
275
276
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 136 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
        } else {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, true, true, T>, Is_dropout>(params, stream, configure);
        }
    });
}

template<typename T>
void run_mha_bwd_hdim224(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
277
    constexpr static int Headdim = 224;
Tri Dao's avatar
Tri Dao committed
278
279
280
281
282
283
284
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
    });
}

template<typename T>
void run_mha_bwd_hdim256(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
285
    constexpr static int Headdim = 256;
Tri Dao's avatar
Tri Dao committed
286
287
288
289
290
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
291
292
293
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
294
295
296
297
298
299
300
301
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 176 * 1024) {  // H100
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
        } else {  // A100, we don't do double buffering to save smem
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, true, T>, Is_dropout>(params, stream, configure);
        }
    });
}