flash_bwd_launch_template.h 19.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// Copyright (c) 2023, Tri Dao.

#pragma once

#include <ATen/cuda/CUDAContext.h>

#include "static_switch.h"
#include "flash.h"
#include "flash_bwd_kernel.h"

template<bool Clear_dQaccum=true, typename Kernel_traits>
__global__ void flash_bwd_dot_do_o_kernel(Flash_bwd_params params) {
    flash::compute_dot_do_o<Clear_dQaccum, Kernel_traits>(params);
}

template<typename Kernel_traits>
__global__ void flash_bwd_clear_dkvaccum_kernel(Flash_bwd_params params) {
    flash::clear_dKVaccum<Kernel_traits>(params);
}

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_M, bool Is_even_K>
__global__ void flash_bwd_dq_dk_dv_loop_kernel(Flash_bwd_params params) {
    flash::compute_dq_dk_dv<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K>(params);
}

Tri Dao's avatar
Tri Dao committed
26
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K>
Tri Dao's avatar
Tri Dao committed
27
__global__ void flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel(Flash_bwd_params params) {
Tri Dao's avatar
Tri Dao committed
28
29
    static_assert(!(Is_causal && Is_local));  // If Is_local is true, Is_causal should be false
    flash::compute_dq_dk_dv_seqk_parallel<Kernel_traits, Is_dropout, Is_causal, Is_local, Is_even_MN, Is_even_K>(params);
Tri Dao's avatar
Tri Dao committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
}

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K>
__global__ void flash_bwd_dq_dk_dv_loop_seqq_parallel_kernel(Flash_bwd_params params) {
    flash::compute_dq_dk_dv_seqq_parallel<Kernel_traits, Is_dropout, Is_causal, Is_even_N, Is_even_K>(params);
}

template<typename Kernel_traits>
__global__ void flash_bwd_convert_dq_kernel(Flash_bwd_params params) {
    flash::convert_dQ<Kernel_traits>(params);
}

template<typename Kernel_traits>
__global__ void flash_bwd_convert_dkv_kernel(Flash_bwd_params params) {
    flash::convert_dKV<Kernel_traits>(params);
}

template<typename Kernel_traits, bool Is_dropout>
void run_flash_bwd_seqk_parallel(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
    const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
    dim3 grid_m(num_m_block, params.b, params.h);
    const int num_n_block = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
    dim3 grid_n(num_n_block, params.b, params.h);

    flash_bwd_dot_do_o_kernel<true, Kernel_traits><<<grid_m, Kernel_traits::kNThreads, 0, stream>>>(params);
    C10_CUDA_KERNEL_LAUNCH_CHECK();

57
58
59
    // We want to specialize to is_even_MN and not just is_even_M, since in the case where N is not
    // a multiple of kBlockN, we'll need to apply mask in the loop.
    const bool is_even_MN = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_q % Kernel_traits::kBlockM == 0 && params.seqlen_k % Kernel_traits::kBlockN == 0;
Tri Dao's avatar
Tri Dao committed
60
61
62
    const bool is_even_K = params.d == Kernel_traits::kHeadDim;
    constexpr int smem_size_dq_dk_dv = Kernel_traits::kSmemSize1colblock;
    // printf("smem_size_dq_dk_dv = %d\n", smem_size_dq_dk_dv);
63
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
64
        BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
Tri Dao's avatar
Tri Dao committed
65
            BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
66
                BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !params.is_causal, Is_local, [&] {
Tri Dao's avatar
Tri Dao committed
67
68
69
                    // If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
                    // If head dim > 128, set IsEvenMNConst to false to reduce number of templates
                    // If Is_local, set Is_causal to false
70
71
                    auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, Is_dropout, Is_causal, Is_local && !Is_causal, IsEvenMNConst && IsEvenKConst && !Is_local && Kernel_traits::kHeadDim <= 128, IsEvenKConst>;
                    // auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, Is_dropout, Is_causal, IsEvenMNConst, true>;
Tri Dao's avatar
Tri Dao committed
72
73
74
75
76
77
78
                    if (smem_size_dq_dk_dv >= 48 * 1024)  {
                        C10_CUDA_CHECK(cudaFuncSetAttribute(
                            kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size_dq_dk_dv));
                    }
                    kernel<<<grid_n, Kernel_traits::kNThreads, smem_size_dq_dk_dv, stream>>>(params);
                    C10_CUDA_KERNEL_LAUNCH_CHECK();
                });
Tri Dao's avatar
Tri Dao committed
79
80
81
82
83
            });
        });
    });

    auto kernel_dq = &flash_bwd_convert_dq_kernel<Kernel_traits>;
84
    if (Kernel_traits::kSmemdQSize >= 48 * 1024)  {
Tri Dao's avatar
Tri Dao committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        C10_CUDA_CHECK(cudaFuncSetAttribute(
            kernel_dq, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::kSmemdQSize));
    }
    kernel_dq<<<grid_m, Kernel_traits::kNThreads, Kernel_traits::kSmemdQSize, stream>>>(params);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
}

template<typename Kernel_traits, bool Is_dropout>
void run_flash_bwd_seqq_parallel(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
    const int num_n_block = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
    dim3 grid_n(num_n_block, params.b, params.h_k);
    flash_bwd_clear_dkvaccum_kernel<Kernel_traits><<<grid_n, Kernel_traits::kNThreads, 0, stream>>>(params);
    C10_CUDA_KERNEL_LAUNCH_CHECK();

    const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
    dim3 grid_m(num_m_block, params.b, params.h);
    // We also use is_even_N to set Unpadded in the BlockInfo constructor, so we need to check
    // for cu_seqlens_k as well.
    const bool is_even_N = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_k % Kernel_traits::kBlockN == 0;
    const bool is_even_K = params.d == Kernel_traits::kHeadDim;
    constexpr int smem_size_dq_dk_dv = Kernel_traits::kSmemSize1rowblock;
    // printf("smem_size_dq_dk_dv = %d\n", smem_size_dq_dk_dv);
107
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
Tri Dao's avatar
Tri Dao committed
108
109
        BOOL_SWITCH(is_even_N, IsEvenNConst, [&] {
            BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
110
                // If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
111
                auto kernel = &flash_bwd_dq_dk_dv_loop_seqq_parallel_kernel<Kernel_traits, Is_dropout, Is_causal, IsEvenNConst && IsEvenKConst, IsEvenKConst>;
112
                // auto kernel = &flash_bwd_dq_dk_dv_loop_seqq_parallel_kernel<Kernel_traits, false, false, IsEvenNConst, IsEvenKConst>;
113
                if (smem_size_dq_dk_dv >= 48 * 1024)  {
Tri Dao's avatar
Tri Dao committed
114
115
116
117
118
119
120
121
122
123
                    C10_CUDA_CHECK(cudaFuncSetAttribute(
                        kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size_dq_dk_dv));
                }
                kernel<<<grid_m, Kernel_traits::kNThreads, smem_size_dq_dk_dv, stream>>>(params);
                C10_CUDA_KERNEL_LAUNCH_CHECK();
            });
        });
    });

    auto kernel_dkv = &flash_bwd_convert_dkv_kernel<Kernel_traits>;
124
    if (Kernel_traits::kSmemKVSize >= 48 * 1024)  {
Tri Dao's avatar
Tri Dao committed
125
126
127
128
129
130
131
132
133
134
        C10_CUDA_CHECK(cudaFuncSetAttribute(
            kernel_dkv, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::kSmemKVSize));
    }
    kernel_dkv<<<grid_n, Kernel_traits::kNThreads, Kernel_traits::kSmemKVSize, stream>>>(params);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
}

template<typename Kernel_traits, bool Is_dropout>
void run_flash_bwd(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
    if (configure) return;
135
    run_flash_bwd_seqk_parallel<Kernel_traits, Is_dropout>(params, stream, configure);
Tri Dao's avatar
Tri Dao committed
136
137
138
139
}

template<typename T>
void run_mha_bwd_hdim32(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
140
    constexpr static int Headdim = 32;
Tri Dao's avatar
Tri Dao committed
141
142
143
144
145
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
146
147
148
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 2 * ((3 * 128 + 2 * 128) * Headdim + 2 * 128 * 128)) { // 104 KB
            if constexpr(!Is_dropout) {  // We can afford more registers to keep V in registers
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
            } else {
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
            }
        } else {  // 96 KB
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
        }
    });
}

template<typename T>
void run_mha_bwd_hdim64(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
164
    constexpr static int Headdim = 64;
Tri Dao's avatar
Tri Dao committed
165
166
167
168
169
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
170
171
172
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        // Changing AtomLayoutMdQ from 2 to 4 takes the same time
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, false, false, T>>(params, stream, configure);
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, true, false, T>>(params, stream, configure);
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 2, 4, 4, false, false, T>>(params, stream, configure);
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, false, false, T>, Is_dropout>(params, stream, configure);
        // This is slightly faster. We want to split M more so we need fewer registers to store LSE.
        if (max_smem_per_block >= 144 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
            // This has a lot of register spilling
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
        } else {
            // if (params.h == params.h_k) {
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, false, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, true, false, T>, Is_dropout>(params, stream, configure);
            // } else {
            //     run_flash_bwd_seqq_parallel<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, false, false, T>, Is_dropout>(params, stream, configure);
            // }
        }
    });
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, true, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 4, 2, 2, 2, true, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 32, 128, 4, 1, 4, 1, false, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 16, 128, 4, 1, 4, 1, false, false, T>>(params, stream, configure);
    // M=128, N=64 is quite slow, I think because we need to read/write dQaccum twice as many times
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 2, 2, 2, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 4, false, T>>(params, stream, configure);

    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 4, 4, 2, 4, false, false, T>>(params, stream, configure);
}

template<typename T>
void run_mha_bwd_hdim96(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
210
    constexpr static int Headdim = 96;
Tri Dao's avatar
Tri Dao committed
211
212
213
214
215
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
216
217
218
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        // if (params.h == params.h_k) {
            if (max_smem_per_block >= 116 * 1024) {
                if constexpr(!Is_dropout) {  // 92KB
                    run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
                } else {  // 116 KB
                    // This is faster for dropout since we don't have many registers to spare
                    run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
                }
            } else {
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
            }
        // } else {
            // run_flash_bwd_seqq_parallel<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 4, 4, false, false, T>>(params, stream, configure);
        // }
    });
}

template<typename T>
void run_mha_bwd_hdim128(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
240
    constexpr static int Headdim = 128;
Tri Dao's avatar
Tri Dao committed
241
242
243
244
245
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
246
247
248
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        // if (params.h == params.h_k) {
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 32, 128, 8, 2, 2, 2, false, false, T>>(params, stream, configure);
            // This is faster, in the case of sequence-parallel bwd (where we need fewer registers).
            // Out of these three, the 2nd one is slightly faster (2% faster than the first). Idk why.
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 2, 2, false, false, T>>(params, stream, configure);
            if (max_smem_per_block >= 144 * 1024) {
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, false, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd_seqk_parallel<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd_seqk_parallel<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, true, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd_seqq_parallel<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, true, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 2, true, false, T>, Is_dropout>(params, stream, configure);
            } else {
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, true, false, T>, Is_dropout>(params, stream, configure);
            }
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>>(params, stream, configure);

            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 4, 4, false, false, T>>(params, stream, configure);
        // } else {
            // run_flash_bwd_seqq_parallel<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 4, 4, false, false, T>>(params, stream, configure);
        // }
    });
}

template<typename T>
void run_mha_bwd_hdim160(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
279
    constexpr static int Headdim = 160;
Tri Dao's avatar
Tri Dao committed
280
281
282
283
284
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
285
286
287
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
288
289
290
291
292
293
294
295
296
297
298
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 116 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
        } else {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, true, T>, Is_dropout>(params, stream, configure);
        }
    });
}

template<typename T>
void run_mha_bwd_hdim192(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
299
    constexpr static int Headdim = 192;
Tri Dao's avatar
Tri Dao committed
300
301
302
303
304
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
305
306
307
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
308
309
310
311
312
313
314
315
316
317
318
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 136 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
        } else {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, true, true, T>, Is_dropout>(params, stream, configure);
        }
    });
}

template<typename T>
void run_mha_bwd_hdim224(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
319
    constexpr static int Headdim = 224;
Tri Dao's avatar
Tri Dao committed
320
321
322
323
324
325
326
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
    });
}

template<typename T>
void run_mha_bwd_hdim256(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
327
    constexpr static int Headdim = 256;
Tri Dao's avatar
Tri Dao committed
328
329
330
331
332
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
333
334
335
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
336
337
338
339
340
341
342
343
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 176 * 1024) {  // H100
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
        } else {  // A100, we don't do double buffering to save smem
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, true, T>, Is_dropout>(params, stream, configure);
        }
    });
}