flash_bwd_launch_template.h 16.2 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// Copyright (c) 2023, Tri Dao.

#pragma once

#include <ATen/cuda/CUDAContext.h>

#include "static_switch.h"
#include "flash.h"
#include "flash_bwd_kernel.h"

template<bool Clear_dQaccum=true, typename Kernel_traits>
__global__ void flash_bwd_dot_do_o_kernel(Flash_bwd_params params) {
    flash::compute_dot_do_o<Clear_dQaccum, Kernel_traits>(params);
}

template<typename Kernel_traits>
__global__ void flash_bwd_clear_dkvaccum_kernel(Flash_bwd_params params) {
    flash::clear_dKVaccum<Kernel_traits>(params);
}

21
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K>
Tri Dao's avatar
Tri Dao committed
22
__global__ void flash_bwd_dq_dk_dv_loop_kernel(Flash_bwd_params params) {
23
    flash::compute_dq_dk_dv<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K>(params);
Tri Dao's avatar
Tri Dao committed
24
25
}

26
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K>
Tri Dao's avatar
Tri Dao committed
27
__global__ void flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel(Flash_bwd_params params) {
Tri Dao's avatar
Tri Dao committed
28
    static_assert(!(Is_causal && Is_local));  // If Is_local is true, Is_causal should be false
29
    flash::compute_dq_dk_dv_seqk_parallel<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K>(params);
Tri Dao's avatar
Tri Dao committed
30
31
32
}

template<typename Kernel_traits>
33
34
__global__ void flash_bwd_convert_dq_kernel(Flash_bwd_params params, const int nsplits) {
    flash::convert_dQ<Kernel_traits>(params, nsplits);
Tri Dao's avatar
Tri Dao committed
35
36
37
38
39
40
41
42
43
44
45
46
}

template<typename Kernel_traits>
__global__ void flash_bwd_convert_dkv_kernel(Flash_bwd_params params) {
    flash::convert_dKV<Kernel_traits>(params);
}

template<typename Kernel_traits, bool Is_dropout>
void run_flash_bwd_seqk_parallel(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
    const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
    dim3 grid_m(num_m_block, params.b, params.h);
    const int num_n_block = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
47
48
49
50
51
52
    int gridDimx = num_n_block;
    if (params.deterministic) {
        auto dprops = at::cuda::getCurrentDeviceProperties();
        gridDimx = (dprops->multiProcessorCount + params.b * params.h - 1) / (params.b * params.h);
    }
    dim3 grid_n(gridDimx, params.b, params.h);
Tri Dao's avatar
Tri Dao committed
53

54
55
56
57
58
    if (!params.deterministic) {
        flash_bwd_dot_do_o_kernel<true, Kernel_traits><<<grid_m, Kernel_traits::kNThreads, 0, stream>>>(params);
    } else {
        flash_bwd_dot_do_o_kernel<false, Kernel_traits><<<grid_m, Kernel_traits::kNThreads, 0, stream>>>(params);
    }
Tri Dao's avatar
Tri Dao committed
59
60
    C10_CUDA_KERNEL_LAUNCH_CHECK();

61
62
63
    // We want to specialize to is_even_MN and not just is_even_M, since in the case where N is not
    // a multiple of kBlockN, we'll need to apply mask in the loop.
    const bool is_even_MN = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_q % Kernel_traits::kBlockM == 0 && params.seqlen_k % Kernel_traits::kBlockN == 0;
Tri Dao's avatar
Tri Dao committed
64
65
66
    const bool is_even_K = params.d == Kernel_traits::kHeadDim;
    constexpr int smem_size_dq_dk_dv = Kernel_traits::kSmemSize1colblock;
    // printf("smem_size_dq_dk_dv = %d\n", smem_size_dq_dk_dv);
67
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
68
        BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
Tri Dao's avatar
Tri Dao committed
69
            BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
70
                BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !params.is_causal, Is_local, [&] {
71
                    BOOL_SWITCH(params.alibi_slopes_ptr != nullptr, Has_alibi, [&] {
72
73
74
                        // If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
                        // If head dim > 128, set IsEvenMNConst to false to reduce number of templates
                        // If Is_local, set Is_causal to false
75
                        auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, Is_dropout, Is_causal, Is_local && !Is_causal, Has_alibi, IsEvenMNConst && IsEvenKConst && !Is_local && Kernel_traits::kHeadDim <= 128, IsEvenKConst>;
76
                        // auto kernel = &flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel<Kernel_traits, false, Is_causal, false, false, true, true>;
77
78
79
80
81
82
83
                        if (smem_size_dq_dk_dv >= 48 * 1024)  {
                            C10_CUDA_CHECK(cudaFuncSetAttribute(
                                kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size_dq_dk_dv));
                        }
                        kernel<<<grid_n, Kernel_traits::kNThreads, smem_size_dq_dk_dv, stream>>>(params);
                        C10_CUDA_KERNEL_LAUNCH_CHECK();
                    });
Tri Dao's avatar
Tri Dao committed
84
                });
Tri Dao's avatar
Tri Dao committed
85
86
87
88
89
            });
        });
    });

    auto kernel_dq = &flash_bwd_convert_dq_kernel<Kernel_traits>;
90
    if (Kernel_traits::kSmemdQSize >= 48 * 1024)  {
Tri Dao's avatar
Tri Dao committed
91
92
93
        C10_CUDA_CHECK(cudaFuncSetAttribute(
            kernel_dq, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::kSmemdQSize));
    }
94
    kernel_dq<<<grid_m, Kernel_traits::kNThreads, Kernel_traits::kSmemdQSize, stream>>>(params, !params.deterministic ? 1 : gridDimx);
Tri Dao's avatar
Tri Dao committed
95
96
97
98
99
100
    C10_CUDA_KERNEL_LAUNCH_CHECK();
}

template<typename Kernel_traits, bool Is_dropout>
void run_flash_bwd(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
    if (configure) return;
101
    run_flash_bwd_seqk_parallel<Kernel_traits, Is_dropout>(params, stream, configure);
Tri Dao's avatar
Tri Dao committed
102
103
104
105
}

template<typename T>
void run_mha_bwd_hdim32(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
106
    constexpr static int Headdim = 32;
Tri Dao's avatar
Tri Dao committed
107
108
109
110
111
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
112
113
114
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 2 * ((3 * 128 + 2 * 128) * Headdim + 2 * 128 * 128)) { // 104 KB
            if constexpr(!Is_dropout) {  // We can afford more registers to keep V in registers
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
            } else {
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
            }
        } else {  // 96 KB
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
        }
    });
}

template<typename T>
void run_mha_bwd_hdim64(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
130
    constexpr static int Headdim = 64;
Tri Dao's avatar
Tri Dao committed
131
132
133
134
135
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
136
137
138
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        // Changing AtomLayoutMdQ from 2 to 4 takes the same time
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, false, false, T>>(params, stream, configure);
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, true, false, T>>(params, stream, configure);
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 2, 4, 4, false, false, T>>(params, stream, configure);
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, false, false, T>, Is_dropout>(params, stream, configure);
        // This is slightly faster. We want to split M more so we need fewer registers to store LSE.
        if (max_smem_per_block >= 144 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
            // This has a lot of register spilling
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
        } else {
            // if (params.h == params.h_k) {
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, false, false, T>, Is_dropout>(params, stream, configure);
                // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, true, false, T>, Is_dropout>(params, stream, configure);
            // } else {
            // }
        }
    });
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 4, true, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 4, 2, 2, 2, true, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 32, 128, 4, 1, 4, 1, false, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 16, 128, 4, 1, 4, 1, false, false, T>>(params, stream, configure);
    // M=128, N=64 is quite slow, I think because we need to read/write dQaccum twice as many times
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 2, 2, 2, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, false, T>>(params, stream, configure);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 4, false, T>>(params, stream, configure);

    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 4, 4, 2, 4, false, false, T>>(params, stream, configure);
}

template<typename T>
void run_mha_bwd_hdim96(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
175
    constexpr static int Headdim = 96;
Tri Dao's avatar
Tri Dao committed
176
177
178
179
180
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
181
182
183
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
184
185
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
186
187
        if (max_smem_per_block >= 116 * 1024) {
            if constexpr(!Is_dropout) {  // 92KB
Tri Dao's avatar
Tri Dao committed
188
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
189
190
191
            } else {  // 116 KB
                // This is faster for dropout since we don't have many registers to spare
                run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
Tri Dao's avatar
Tri Dao committed
192
            }
193
194
195
        } else {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, true, false, T>, Is_dropout>(params, stream, configure);
        }
Tri Dao's avatar
Tri Dao committed
196
197
198
199
200
    });
}

template<typename T>
void run_mha_bwd_hdim128(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
201
    constexpr static int Headdim = 128;
Tri Dao's avatar
Tri Dao committed
202
203
204
205
206
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
207
208
209
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
210
211
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 32, 128, 8, 2, 2, 2, false, false, T>>(params, stream, configure);
        // This is faster, in the case of sequence-parallel bwd (where we need fewer registers).
        // Out of these three, the 2nd one is slightly faster (2% faster than the first). Idk why.
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 2, 2, false, false, T>>(params, stream, configure);
        if (max_smem_per_block >= 144 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, false, false, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd_seqk_parallel<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd_seqk_parallel<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, 4, 4, 4, false, true, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 2, true, false, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 2, 2, true, false, T>, Is_dropout>(params, stream, configure);
        } else {
            // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, true, false, T>, Is_dropout>(params, stream, configure);
        }
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, 2, 4, 4, false, false, T>>(params, stream, configure);
Tri Dao's avatar
Tri Dao committed
228

229
        // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, 4, 4, 4, false, false, T>>(params, stream, configure);
Tri Dao's avatar
Tri Dao committed
230
231
232
233
234
    });
}

template<typename T>
void run_mha_bwd_hdim160(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
235
    constexpr static int Headdim = 160;
Tri Dao's avatar
Tri Dao committed
236
237
238
239
240
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
241
242
243
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
244
245
246
247
248
249
250
251
252
253
254
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 116 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
        } else {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, true, T>, Is_dropout>(params, stream, configure);
        }
    });
}

template<typename T>
void run_mha_bwd_hdim192(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
255
    constexpr static int Headdim = 192;
Tri Dao's avatar
Tri Dao committed
256
257
258
259
260
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
261
262
263
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
264
265
266
267
268
269
270
271
272
273
274
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 136 * 1024) {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
        } else {
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, true, true, T>, Is_dropout>(params, stream, configure);
        }
    });
}

template<typename T>
void run_mha_bwd_hdim224(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
275
    constexpr static int Headdim = 224;
Tri Dao's avatar
Tri Dao committed
276
277
278
279
280
281
282
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 4, 4, false, false, T>, Is_dropout>(params, stream, configure);
    });
}

template<typename T>
void run_mha_bwd_hdim256(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
283
    constexpr static int Headdim = 256;
Tri Dao's avatar
Tri Dao committed
284
285
286
287
288
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
Driss Guessous's avatar
Driss Guessous committed
289
290
291
    if (status_ != cudaSuccess) {
      C10_CUDA_CHECK(status_);
    }
Tri Dao's avatar
Tri Dao committed
292
293
294
295
296
297
298
299
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        if (max_smem_per_block >= 176 * 1024) {  // H100
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, false, T>, Is_dropout>(params, stream, configure);
        } else {  // A100, we don't do double buffering to save smem
            run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 64, 8, 4, 2, 2, false, true, T>, Is_dropout>(params, stream, configure);
        }
    });
}