ln_api.cpp 19 KB
Newer Older
1
2
#include <torch/extension.h>
#include "ATen/cuda/CUDAContext.h"
3
#include <c10/cuda/CUDAGuard.h>
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

#include "ln.h"

/*

Supported Type combinations:

input  residual   compute   weights   output
============================================
fp32     fp32      fp32      fp32      fp32
fp16     fp32      fp32      fp32      fp16
fp16     fp16      fp32      fp32      fp16
bf16     fp32      fp32      fp32      bf16
bf16     bf16      fp32      fp32      bf16
fp16     fp16      fp32      fp16      fp16
bf16     bf16      fp32      bf16      bf16

Remarks:
Output type = Input type
Compute always in FP32

*/

namespace layer_norm {

// Create registries and provide runtime versions of config hash functions.

FwdRegistry FWD_FUNCS;
BwdRegistry BWD_FUNCS;

////////////////////////////////////////////////////////////////////////////////////////////////////

uint32_t get_type_id(torch::Dtype dtype){
    if( dtype == torch::kFloat16 ) {
        return TypeId<fp16>::Value;
    } else if( dtype == torch::kBFloat16 ) {
        return TypeId<bf16>::Value;
    } else if( dtype == torch::kFloat32 ) {
        return TypeId<fp32>::Value;
    } else {
        TORCH_CHECK(false, "Type not supported: ", dtype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

uint64_t get_key(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint64_t hidden_size) {
    using namespace layer_norm;
    uint64_t type_key = get_type_id(wtype) | (get_type_id(itype) << 2) | (get_type_id(rtype) << 4) | (get_type_id(otype) << 6) | (get_type_id(ctype) << 8);
    uint64_t launcher_key = (type_key << 32) | hidden_size;
    return launcher_key;
}

}  // namespace layer_norm

////////////////////////////////////////////////////////////////////////////////////////////////////

layer_norm::FwdFunction & get_fwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) {
    auto iter = layer_norm::FWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size));
    if( iter != layer_norm::FWD_FUNCS.end() ) {
        return iter->second;
    } else {
        TORCH_CHECK(false, "FWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

layer_norm::BwdFunction & get_bwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) {
    auto iter = layer_norm::BWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size));
    if( iter != layer_norm::BWD_FUNCS.end() ) {
        return iter->second;
    } else {
        TORCH_CHECK(false, "BWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

std::vector<at::Tensor> dropout_add_ln_fwd(const at::Tensor &x0,      // Input: BxSxhidden_size
                                           c10::optional<const at::Tensor> &x1_,      // Residual: BxSxhidden_size
                                           const at::Tensor &gamma,   // hidden_size
                                           const at::Tensor &beta,   // hidden_size
                                           c10::optional<const at::Tensor> &rowscale_,      // BxS
88
89
90
                                           c10::optional<const at::Tensor> &colscale_,      // hidden_size
                                           c10::optional<const at::Tensor> &x0_subset_,      // BxS
                                           c10::optional<const at::Tensor> &z_subset_,      // BxS
91
92
                                           const float dropout_p,
                                           const float epsilon,
93
94
                                           const float rowscale_const,
                                           const int64_t z_numrows,
95
96
97
98
99
100
101
102
103
104
105
106
                                           c10::optional<at::Generator> gen_,
                                           bool residual_in_fp32
) {
    auto itype = x0.scalar_type();
    auto rtype = x1_.has_value()
        ? x1_.value().scalar_type()
        : (residual_in_fp32 ? torch::kFloat32 : x0.scalar_type());
    auto wtype = gamma.scalar_type();
    auto otype = itype;
    auto ctype = torch::kFloat32;
    auto mtype = torch::kUInt8;

107
    TORCH_CHECK(beta.dtype() == wtype);
108
109
110
111
112
113

    TORCH_CHECK(x0.is_cuda())
    TORCH_CHECK(gamma.is_cuda())
    TORCH_CHECK(beta.is_cuda())

    TORCH_CHECK(x0.is_contiguous());
114
115
116
117
118
119
    // c10::IntArrayRef does not own the storage, so we need to construct a vector.
    // Otherwise just constructing IntArrayRef({blah}) will cause unintialized memory because
    // blah is then deallocated.
    std::vector<int64_t> sizes_vec {!x0_subset_.has_value() ? x0.size(0) : x0_subset_.value().size(0), x0.size(1)};
    auto sizes = c10::IntArrayRef(sizes_vec);
    TORCH_CHECK(x0.dim() == 2);
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    TORCH_CHECK(sizes.size() == 2);

    const int rows = sizes[0];
    const int cols = sizes[1];
    auto hidden_size = gamma.numel();

    if (x1_.has_value()) {
        auto x1 = x1_.value();
        TORCH_CHECK(x1.is_cuda())
        TORCH_CHECK(x1.is_contiguous());
        TORCH_CHECK(x1.sizes() == sizes);
    }

    if (rowscale_.has_value()) {
        auto rowscale = rowscale_.value();
        TORCH_CHECK(rowscale.is_cuda())
        TORCH_CHECK(rowscale.is_contiguous());
137
        TORCH_CHECK(rowscale.sizes() == c10::IntArrayRef{rows});
Tri Dao's avatar
Tri Dao committed
138
139
140
141
142
143
144
        TORCH_CHECK(rowscale.dtype() == itype);
    }

    if (colscale_.has_value()) {
        auto colscale = colscale_.value();
        TORCH_CHECK(colscale.is_cuda())
        TORCH_CHECK(colscale.is_contiguous());
145
        TORCH_CHECK(colscale.sizes() == c10::IntArrayRef{cols});
Tri Dao's avatar
Tri Dao committed
146
        TORCH_CHECK(colscale.dtype() == wtype);
147
148
    }

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    if (x0_subset_.has_value()) {
        auto x0_subset = x0_subset_.value();
        TORCH_CHECK(x0_subset.is_cuda())
        TORCH_CHECK(x0_subset.is_contiguous());
        TORCH_CHECK(x0_subset.sizes() == c10::IntArrayRef{rows});
        TORCH_CHECK(x0_subset.dtype() == torch::kInt32);

        TORCH_CHECK(z_subset_.has_value());
        auto z_subset = z_subset_.value();
        TORCH_CHECK(z_subset.is_cuda());
        TORCH_CHECK(z_subset.is_contiguous());
        TORCH_CHECK(z_subset.sizes() == c10::IntArrayRef{rows});
        TORCH_CHECK(z_subset.dtype() == torch::kInt32);
    }

164
165
    TORCH_CHECK(gamma.sizes() == beta.sizes());
    TORCH_CHECK(hidden_size == cols);
166
    TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 6144));
167
168
169

    TORCH_CHECK(epsilon >= 0.f);

170
171
172
173
    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)x0.get_device()};

174
175
    auto opts = x0.options();

176
    bool save_x = x1_.has_value() || (dropout_p > 0.f) || rowscale_.has_value() || colscale_.has_value() || x0_subset_.has_value() || (itype != rtype);
177
178
179
    at::Tensor x;
    if (save_x) { x = torch::empty(sizes, opts.dtype(rtype)); }
    at::Tensor dmask;
180
181
    if (dropout_p > 0.f) { dmask = torch::empty(x0.sizes(), opts.dtype(mtype)); };
    auto z = torch::empty(z_subset_.has_value() ? c10::IntArrayRef{z_numrows, cols} : sizes, opts.dtype(otype));
182
183
184
185
186
187
188
189
190
191
192
193

    auto mu = torch::empty({ rows }, opts.dtype(ctype));
    auto rsigma = torch::empty({ rows }, opts.dtype(ctype));

    layer_norm::LaunchParams<layer_norm::FwdParams> launch_params;

    launch_params.props = at::cuda::getCurrentDeviceProperties();
    launch_params.stream = at::cuda::getCurrentCUDAStream().stream();
    TORCH_CHECK(dropout_p < 1.f);
    launch_params.params.dropout_keep_p = 1.f - dropout_p;
    launch_params.params.x1 = x1_.has_value() ? x1_.value().data_ptr() : nullptr;
    launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr;
Tri Dao's avatar
Tri Dao committed
194
    launch_params.params.colscale = colscale_.has_value() ? colscale_.value().data_ptr() : nullptr;
195
196
    launch_params.params.x0_subset = x0_subset_.has_value() ? x0_subset_.value().data_ptr() : nullptr;
    launch_params.params.z_subset = z_subset_.has_value() ? z_subset_.value().data_ptr() : nullptr;
197
198
199
200

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

201
202
    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024);
203
    // Request the kernel launcher.
204
    auto launcher = get_fwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple));
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    // Query the kernel-specific launch parameters.
    launcher(launch_params, true);

    at::Tensor workspace, barrier;

    // Set the kernel runtime parameters.
    layer_norm::FwdParams &params = launch_params.params;
    params.rows = rows;
    params.cols = cols;
    params.x0 = x0.data_ptr();
    params.x = save_x ? x.data_ptr() : nullptr;
    params.dmask = dropout_p > 0.f ? dmask.data_ptr() : nullptr;
    params.mu = mu.data_ptr();
    params.rs = rsigma.data_ptr();
    params.gamma = gamma.data_ptr();
    params.beta = beta.data_ptr();
    params.z = z.data_ptr();
    params.epsilon = epsilon;
    params.dropout_scale = 1.f / (1.f - dropout_p);
225
    params.inverse_cols = 1.f / float(params.cols);
226
    params.rowscale_const = rowscale_const;
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

    if (dropout_p > 0.f) {
        // number of times random will be generated per thread, to offset philox counter in thc random
        // state
        int64_t counter_offset = launch_params.elts_per_thread;

        // See Note [Acquire lock when using random generators]
        {
            std::lock_guard<std::mutex> lock(gen->mutex_);
            params.philox_args = gen->philox_cuda_state(counter_offset);
        }
    }

    if( launch_params.barrier_size > 0 ) {
        auto options = x0.options();
        barrier = torch::zeros(launch_params.barrier_size, options.dtype(torch::kInt32));
        workspace = torch::empty(launch_params.workspace_bytes, options.dtype(torch::kChar));
        params.workspace = workspace.data_ptr();
        params.barrier = barrier.data_ptr<int>();
    }

    // Launch the kernel.
    launcher(launch_params, false);

    return { z, x, dmask, mu, rsigma };
}

////////////////////////////////////////////////////////////////////////////////////////////////////

std::vector<at::Tensor> dropout_add_ln_bwd(const at::Tensor &dz,     // BxSxhidden_size
Tri Dao's avatar
Tri Dao committed
257
                                           c10::optional<const at::Tensor> &dx_,     // BxSxhidden_size
258
                                           const at::Tensor &x,      // BxSxhidden_size
Tri Dao's avatar
Tri Dao committed
259
                                           c10::optional<const at::Tensor> &x0_,     // BxSxhidden_size
260
261
262
263
264
                                           c10::optional<const at::Tensor> &dmask_,  // BxSxhidden_size
                                           const at::Tensor &mu,     // BxS, FP32!
                                           const at::Tensor &rsigma, // BxS, FP32!
                                           const at::Tensor &gamma,   // hidden_size
                                           c10::optional<const at::Tensor> &rowscale_,      // BxS
265
266
267
                                           c10::optional<const at::Tensor> &colscale_,      // hidden_size
                                           c10::optional<const at::Tensor> &x0_subset_,      // BxS
                                           c10::optional<const at::Tensor> &z_subset_,      // BxS
268
                                           const float dropout_p,
269
270
                                           const float rowscale_const,
                                           const int64_t x0_numrows,
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
                                           const bool has_residual
) {

    auto itype = dz.scalar_type();
    auto rtype = x.scalar_type();
    auto wtype = gamma.scalar_type();
    auto otype = itype;
    auto ctype = torch::kFloat32;
    auto mtype = torch::kUInt8;

    if (dropout_p > 0.f) { TORCH_CHECK(dmask_.has_value()); }

    TORCH_CHECK(dz.dtype() == otype);
    TORCH_CHECK(mu.dtype() == ctype);
    TORCH_CHECK(rsigma.dtype() == ctype);

    TORCH_CHECK(x.is_cuda());
    TORCH_CHECK(dz.is_cuda());
    TORCH_CHECK(mu.is_cuda());
    TORCH_CHECK(rsigma.is_cuda());
    TORCH_CHECK(gamma.is_cuda());

    TORCH_CHECK(x.is_contiguous());
    TORCH_CHECK(dz.is_contiguous());

    auto sizes = x.sizes();
    TORCH_CHECK(sizes.size() == 2);
    auto rows = sizes[0];
    auto cols = sizes[1];
300
301
302
303
304
305
306
307
    TORCH_CHECK(dz.dim() == 2);
    TORCH_CHECK(dz.size(1) == cols);

    // c10::IntArrayRef does not own the storage, so we need to construct a vector.
    // Otherwise just constructing IntArrayRef({blah}) will cause unintialized memory because
    // blah is then deallocated.
    std::vector<int64_t> x0_sizes_vec {!x0_subset_.has_value() ? rows : x0_numrows, cols};
    auto x0_sizes = c10::IntArrayRef(x0_sizes_vec);
308

Tri Dao's avatar
Tri Dao committed
309
310
311
312
313
314
    if (dx_.has_value()) {
        auto dx = dx_.value();
        TORCH_CHECK(dx.dtype() == rtype);
        TORCH_CHECK(dx.is_cuda())
        TORCH_CHECK(dx.is_contiguous());
        TORCH_CHECK(dx.sizes() == sizes);
315
316
317
318
319
320
321
    }

    if (dmask_.has_value()) {
        auto dmask = dmask_.value();
        TORCH_CHECK(dmask.dtype() == mtype);
        TORCH_CHECK(dmask.is_cuda());
        TORCH_CHECK(dmask.is_contiguous());
322
        TORCH_CHECK(dmask.sizes() == x0_sizes);
323
324
325
326
327
328
    }

    if (rowscale_.has_value()) {
        auto rowscale = rowscale_.value();
        TORCH_CHECK(rowscale.is_cuda())
        TORCH_CHECK(rowscale.is_contiguous());
329
        TORCH_CHECK(rowscale.sizes() == c10::IntArrayRef{rows});
Tri Dao's avatar
Tri Dao committed
330
331
332
333
334
335
336
        TORCH_CHECK(rowscale.dtype() == itype);
    }

    if (colscale_.has_value()) {
        auto colscale = colscale_.value();
        TORCH_CHECK(colscale.is_cuda())
        TORCH_CHECK(colscale.is_contiguous());
337
        TORCH_CHECK(colscale.sizes() == c10::IntArrayRef{cols});
Tri Dao's avatar
Tri Dao committed
338
339
340
341
342
343
        TORCH_CHECK(colscale.dtype() == wtype);

        TORCH_CHECK(x0_.has_value());
        auto x0 = x0_.value();
        TORCH_CHECK(x0.is_cuda())
        TORCH_CHECK(x0.is_contiguous());
344
        TORCH_CHECK(x0.sizes() == x0_sizes);
Tri Dao's avatar
Tri Dao committed
345
        TORCH_CHECK(x0.dtype() == itype);
346
347
    }

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    if (x0_subset_.has_value()) {
        auto x0_subset = x0_subset_.value();
        TORCH_CHECK(x0_subset.is_cuda())
        TORCH_CHECK(x0_subset.is_contiguous());
        TORCH_CHECK(x0_subset.sizes() == c10::IntArrayRef{rows});
        TORCH_CHECK(x0_subset.dtype() == torch::kInt32);

        TORCH_CHECK(z_subset_.has_value());
        auto z_subset = z_subset_.value();
        TORCH_CHECK(z_subset.is_cuda());
        TORCH_CHECK(z_subset.is_contiguous());
        TORCH_CHECK(z_subset.sizes() == c10::IntArrayRef{rows});
        TORCH_CHECK(z_subset.dtype() == torch::kInt32);
    }

363
    auto hidden_size = gamma.numel();
364
365
    TORCH_CHECK(hidden_size == cols);
    TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 6144));
366
367
368
369
370
371

    TORCH_CHECK(mu.numel() == rows);
    TORCH_CHECK(mu.sizes() == rsigma.sizes());

    TORCH_CHECK(gamma.numel() == cols);

372
373
374
375
    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)dz.get_device()};

376
377
    auto opts = x.options();

378
    auto dx0 = torch::empty(x0_sizes, opts.dtype(itype));
379
380
381
382
    at::Tensor dx1;
    if (has_residual) { dx1 = torch::empty_like(x, opts.dtype(rtype)); }
    auto dgamma = torch::empty_like(gamma);
    auto dbeta = torch::empty_like(gamma);
Tri Dao's avatar
Tri Dao committed
383
384
385
386
    at::Tensor dcolscale;
    if (colscale_.has_value()) {
        dcolscale = torch::empty_like(colscale_.value());
    }
387
388
389
390
391
392
393
394

    layer_norm::LaunchParams<layer_norm::BwdParams> launch_params;
    launch_params.stream = at::cuda::getCurrentCUDAStream().stream();
    launch_params.props = at::cuda::getCurrentDeviceProperties();
    TORCH_CHECK(dropout_p < 1.f);
    launch_params.params.dropout_keep_p = 1.f - dropout_p;
    launch_params.params.dx1 = has_residual ? dx1.data_ptr() : nullptr;
    launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr;
Tri Dao's avatar
Tri Dao committed
395
    launch_params.params.colscale = colscale_.has_value() ? colscale_.value().data_ptr() : nullptr;
396
397
    launch_params.params.x0_subset = x0_subset_.has_value() ? x0_subset_.value().data_ptr() : nullptr;
    launch_params.params.z_subset = z_subset_.has_value() ? z_subset_.value().data_ptr() : nullptr;
398

399
400
401
    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024);
    auto launcher = get_bwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple));
402

Tri Dao's avatar
Tri Dao committed
403
    launcher(launch_params, true);
404
405
406

    auto dgamma_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    auto dbeta_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
Tri Dao's avatar
Tri Dao committed
407
408
409
410
    at::Tensor dcolscale_part;
    if (colscale_.has_value()) {
        dcolscale_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    }
411
412
413
414
415
416
    at::Tensor workspace, barrier;

    layer_norm::BwdParams &params = launch_params.params;
    params.rows = rows;
    params.cols = cols;
    params.x = x.data_ptr();
Tri Dao's avatar
Tri Dao committed
417
    params.x0 = x0_.has_value() ? x0_.value().data_ptr() : nullptr;
418
419
420
421
422
    params.dmask = dropout_p > 0.f ? dmask_.value().data_ptr() : nullptr;
    params.mu = mu.data_ptr();
    params.rs = rsigma.data_ptr();
    params.gamma = gamma.data_ptr();
    params.dz = dz.data_ptr();
Tri Dao's avatar
Tri Dao committed
423
    params.dx = dx_.has_value() ? dx_.value().data_ptr() : nullptr;
424
425
426
    params.dx0 = dx0.data_ptr();
    params.dbeta = dbeta.data_ptr();
    params.dgamma = dgamma.data_ptr();
Tri Dao's avatar
Tri Dao committed
427
    params.dcolscale = colscale_.has_value() ? dcolscale.data_ptr() : nullptr;
428
429
    params.dbeta_part = dbeta_part.data_ptr();
    params.dgamma_part = dgamma_part.data_ptr();
Tri Dao's avatar
Tri Dao committed
430
    params.dcolscale_part = colscale_.has_value() ? dcolscale_part.data_ptr() : nullptr;
431
    params.dropout_scale = 1.f / (1.f - dropout_p);
432
    params.inverse_cols = 1.f / float(params.cols);
433
    params.rowscale_const = rowscale_const;
434
435
436
437
438
439
440
441
442

    if( launch_params.barrier_size > 0 ) {
        // TODO Any way to avoid this?
        barrier = torch::zeros(launch_params.barrier_size, opts.dtype(torch::kInt32));
        workspace = torch::empty(launch_params.workspace_bytes, opts.dtype(torch::kChar));
        params.workspace = workspace.data_ptr();
        params.barrier = barrier.data_ptr<int>();
    }

Tri Dao's avatar
Tri Dao committed
443
    launcher(launch_params, false);
444

Tri Dao's avatar
Tri Dao committed
445
446
447
448
449
450
    std::vector<at::Tensor> result = { dx0, dx1, dgamma, dbeta, dgamma_part, dbeta_part };
    if (colscale_.has_value()) {
        result.push_back(dcolscale);
        result.push_back(dcolscale_part);
    }
    return result;
451
452
453
454
455
456
457
458
}
////////////////////////////////////////////////////////////////////////////////////////////////////

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.doc() = "CUDA DropoutAddLayerNorm";
  m.def("dropout_add_ln_fwd", &dropout_add_ln_fwd, "Run Dropout + Add + LayerNorm forward kernel");
  m.def("dropout_add_ln_bwd", &dropout_add_ln_bwd, "Run Dropout + Add + LayerNorm backward kernel");
}