"...consistency_distillation/train_lcm_distill_sd_wds.py" did not exist on "d67eba0f3188a23d12c3e64cae19689b87881295"
ln_api.cpp 15.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <torch/extension.h>
#include "ATen/cuda/CUDAContext.h"

#include "ln.h"

/*

Supported Type combinations:

input  residual   compute   weights   output
============================================
fp32     fp32      fp32      fp32      fp32
fp16     fp32      fp32      fp32      fp16
fp16     fp16      fp32      fp32      fp16
bf16     fp32      fp32      fp32      bf16
bf16     bf16      fp32      fp32      bf16
fp16     fp16      fp32      fp16      fp16
bf16     bf16      fp32      bf16      bf16

Remarks:
Output type = Input type
Compute always in FP32

*/

namespace layer_norm {

// Create registries and provide runtime versions of config hash functions.

FwdRegistry FWD_FUNCS;
BwdRegistry BWD_FUNCS;

////////////////////////////////////////////////////////////////////////////////////////////////////

uint32_t get_type_id(torch::Dtype dtype){
    if( dtype == torch::kFloat16 ) {
        return TypeId<fp16>::Value;
    } else if( dtype == torch::kBFloat16 ) {
        return TypeId<bf16>::Value;
    } else if( dtype == torch::kFloat32 ) {
        return TypeId<fp32>::Value;
    } else {
        TORCH_CHECK(false, "Type not supported: ", dtype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

uint64_t get_key(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint64_t hidden_size) {
    using namespace layer_norm;
    uint64_t type_key = get_type_id(wtype) | (get_type_id(itype) << 2) | (get_type_id(rtype) << 4) | (get_type_id(otype) << 6) | (get_type_id(ctype) << 8);
    uint64_t launcher_key = (type_key << 32) | hidden_size;
    return launcher_key;
}

}  // namespace layer_norm

////////////////////////////////////////////////////////////////////////////////////////////////////

layer_norm::FwdFunction & get_fwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) {
    auto iter = layer_norm::FWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size));
    if( iter != layer_norm::FWD_FUNCS.end() ) {
        return iter->second;
    } else {
        TORCH_CHECK(false, "FWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

layer_norm::BwdFunction & get_bwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) {
    auto iter = layer_norm::BWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size));
    if( iter != layer_norm::BWD_FUNCS.end() ) {
        return iter->second;
    } else {
        TORCH_CHECK(false, "BWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

std::vector<at::Tensor> dropout_add_ln_fwd(const at::Tensor &x0,      // Input: BxSxhidden_size
                                           c10::optional<const at::Tensor> &x1_,      // Residual: BxSxhidden_size
                                           const at::Tensor &gamma,   // hidden_size
                                           const at::Tensor &beta,   // hidden_size
                                           c10::optional<const at::Tensor> &rowscale_,      // BxS
Tri Dao's avatar
Tri Dao committed
87
                                           c10::optional<const at::Tensor> &colscale_,      // BxS
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
                                           const float dropout_p,
                                           const float epsilon,
                                           c10::optional<at::Generator> gen_,
                                           bool residual_in_fp32
) {
    auto itype = x0.scalar_type();
    auto rtype = x1_.has_value()
        ? x1_.value().scalar_type()
        : (residual_in_fp32 ? torch::kFloat32 : x0.scalar_type());
    auto wtype = gamma.scalar_type();
    auto otype = itype;
    auto ctype = torch::kFloat32;
    auto mtype = torch::kUInt8;

    TORCH_CHECK(beta.scalar_type() == wtype);

    TORCH_CHECK(x0.is_cuda())
    TORCH_CHECK(gamma.is_cuda())
    TORCH_CHECK(beta.is_cuda())

    TORCH_CHECK(x0.is_contiguous());
    auto sizes = x0.sizes();
    TORCH_CHECK(sizes.size() == 2);

    const int rows = sizes[0];
    const int cols = sizes[1];
    auto hidden_size = gamma.numel();

    if (x1_.has_value()) {
        auto x1 = x1_.value();
        TORCH_CHECK(x1.is_cuda())
        TORCH_CHECK(x1.is_contiguous());
        TORCH_CHECK(x1.sizes() == sizes);
    }

    if (rowscale_.has_value()) {
        auto rowscale = rowscale_.value();
        TORCH_CHECK(rowscale.is_cuda())
        TORCH_CHECK(rowscale.is_contiguous());
        TORCH_CHECK(rowscale.sizes() == std::vector<int64_t>{rows});
Tri Dao's avatar
Tri Dao committed
128
129
130
131
132
133
134
135
136
        TORCH_CHECK(rowscale.dtype() == itype);
    }

    if (colscale_.has_value()) {
        auto colscale = colscale_.value();
        TORCH_CHECK(colscale.is_cuda())
        TORCH_CHECK(colscale.is_contiguous());
        TORCH_CHECK(colscale.sizes() == std::vector<int64_t>{cols});
        TORCH_CHECK(colscale.dtype() == wtype);
137
138
139
140
    }

    TORCH_CHECK(gamma.sizes() == beta.sizes());
    TORCH_CHECK(hidden_size == cols);
141
    TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 6144));
142
143
144
145
146

    TORCH_CHECK(epsilon >= 0.f);

    auto opts = x0.options();

Tri Dao's avatar
Tri Dao committed
147
    bool save_x = x1_.has_value() || (dropout_p > 0.f) || rowscale_.has_value() || colscale_.has_value() || (itype != rtype);
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    at::Tensor x;
    if (save_x) { x = torch::empty(sizes, opts.dtype(rtype)); }
    at::Tensor dmask;
    if (dropout_p > 0.f) { dmask = torch::empty(sizes, opts.dtype(mtype)); };
    auto z = torch::empty(sizes, opts.dtype(otype));

    auto mu = torch::empty({ rows }, opts.dtype(ctype));
    auto rsigma = torch::empty({ rows }, opts.dtype(ctype));

    layer_norm::LaunchParams<layer_norm::FwdParams> launch_params;

    launch_params.props = at::cuda::getCurrentDeviceProperties();
    launch_params.stream = at::cuda::getCurrentCUDAStream().stream();
    TORCH_CHECK(dropout_p < 1.f);
    launch_params.params.dropout_keep_p = 1.f - dropout_p;
    launch_params.params.x1 = x1_.has_value() ? x1_.value().data_ptr() : nullptr;
    launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr;
Tri Dao's avatar
Tri Dao committed
165
    launch_params.params.colscale = colscale_.has_value() ? colscale_.value().data_ptr() : nullptr;
166
167
168
169

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

170
171
    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024);
172
    // Request the kernel launcher.
173
    auto launcher = get_fwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple));
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

    // Query the kernel-specific launch parameters.
    launcher(launch_params, true);

    at::Tensor workspace, barrier;

    // Set the kernel runtime parameters.
    layer_norm::FwdParams &params = launch_params.params;
    params.rows = rows;
    params.cols = cols;
    params.x0 = x0.data_ptr();
    params.x = save_x ? x.data_ptr() : nullptr;
    params.dmask = dropout_p > 0.f ? dmask.data_ptr() : nullptr;
    params.mu = mu.data_ptr();
    params.rs = rsigma.data_ptr();
    params.gamma = gamma.data_ptr();
    params.beta = beta.data_ptr();
    params.z = z.data_ptr();
    params.epsilon = epsilon;
    params.dropout_scale = 1.f / (1.f - dropout_p);
194
    params.inverse_cols = 1.f / float(params.cols);
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    if (dropout_p > 0.f) {
        // number of times random will be generated per thread, to offset philox counter in thc random
        // state
        int64_t counter_offset = launch_params.elts_per_thread;

        // See Note [Acquire lock when using random generators]
        {
            std::lock_guard<std::mutex> lock(gen->mutex_);
            params.philox_args = gen->philox_cuda_state(counter_offset);
        }
    }

    if( launch_params.barrier_size > 0 ) {
        auto options = x0.options();
        barrier = torch::zeros(launch_params.barrier_size, options.dtype(torch::kInt32));
        workspace = torch::empty(launch_params.workspace_bytes, options.dtype(torch::kChar));
        params.workspace = workspace.data_ptr();
        params.barrier = barrier.data_ptr<int>();
    }

    // Launch the kernel.
    launcher(launch_params, false);

    return { z, x, dmask, mu, rsigma };
}

////////////////////////////////////////////////////////////////////////////////////////////////////

std::vector<at::Tensor> dropout_add_ln_bwd(const at::Tensor &dz,     // BxSxhidden_size
Tri Dao's avatar
Tri Dao committed
225
                                           c10::optional<const at::Tensor> &dx_,     // BxSxhidden_size
226
                                           const at::Tensor &x,      // BxSxhidden_size
Tri Dao's avatar
Tri Dao committed
227
                                           c10::optional<const at::Tensor> &x0_,     // BxSxhidden_size
228
229
230
231
232
                                           c10::optional<const at::Tensor> &dmask_,  // BxSxhidden_size
                                           const at::Tensor &mu,     // BxS, FP32!
                                           const at::Tensor &rsigma, // BxS, FP32!
                                           const at::Tensor &gamma,   // hidden_size
                                           c10::optional<const at::Tensor> &rowscale_,      // BxS
Tri Dao's avatar
Tri Dao committed
233
                                           c10::optional<const at::Tensor> &colscale_,      // BxS
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
                                           const float dropout_p,
                                           const bool has_residual
) {

    auto itype = dz.scalar_type();
    auto rtype = x.scalar_type();
    auto wtype = gamma.scalar_type();
    auto otype = itype;
    auto ctype = torch::kFloat32;
    auto mtype = torch::kUInt8;

    if (dropout_p > 0.f) { TORCH_CHECK(dmask_.has_value()); }

    TORCH_CHECK(dz.dtype() == otype);
    TORCH_CHECK(mu.dtype() == ctype);
    TORCH_CHECK(rsigma.dtype() == ctype);

    TORCH_CHECK(x.is_cuda());
    TORCH_CHECK(dz.is_cuda());
    TORCH_CHECK(mu.is_cuda());
    TORCH_CHECK(rsigma.is_cuda());
    TORCH_CHECK(gamma.is_cuda());

    TORCH_CHECK(x.is_contiguous());
    TORCH_CHECK(dz.is_contiguous());

    auto sizes = x.sizes();
    TORCH_CHECK(sizes.size() == 2);
    TORCH_CHECK(dz.sizes() == sizes);
    auto rows = sizes[0];
    auto cols = sizes[1];

Tri Dao's avatar
Tri Dao committed
266
267
268
269
270
271
    if (dx_.has_value()) {
        auto dx = dx_.value();
        TORCH_CHECK(dx.dtype() == rtype);
        TORCH_CHECK(dx.is_cuda())
        TORCH_CHECK(dx.is_contiguous());
        TORCH_CHECK(dx.sizes() == sizes);
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    }

    if (dmask_.has_value()) {
        auto dmask = dmask_.value();
        TORCH_CHECK(dmask.dtype() == mtype);
        TORCH_CHECK(dmask.is_cuda());
        TORCH_CHECK(dmask.is_contiguous());
        TORCH_CHECK(dmask.sizes() == sizes);
    }

    if (rowscale_.has_value()) {
        auto rowscale = rowscale_.value();
        TORCH_CHECK(rowscale.is_cuda())
        TORCH_CHECK(rowscale.is_contiguous());
        TORCH_CHECK(rowscale.sizes() == std::vector<int64_t>{rows});
Tri Dao's avatar
Tri Dao committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        TORCH_CHECK(rowscale.dtype() == itype);
    }

    if (colscale_.has_value()) {
        auto colscale = colscale_.value();
        TORCH_CHECK(colscale.is_cuda())
        TORCH_CHECK(colscale.is_contiguous());
        TORCH_CHECK(colscale.sizes() == std::vector<int64_t>{cols});
        TORCH_CHECK(colscale.dtype() == wtype);

        TORCH_CHECK(x0_.has_value());
        auto x0 = x0_.value();
        TORCH_CHECK(x0.is_cuda())
        TORCH_CHECK(x0.is_contiguous());
        TORCH_CHECK(x0.sizes() == sizes);
        TORCH_CHECK(x0.dtype() == itype);
303
304
305
    }

    auto hidden_size = gamma.numel();
306
307
    TORCH_CHECK(hidden_size == cols);
    TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 6144));
308
309
310
311
312
313
314
315
316
317
318
319
320

    TORCH_CHECK(mu.numel() == rows);
    TORCH_CHECK(mu.sizes() == rsigma.sizes());

    TORCH_CHECK(gamma.numel() == cols);

    auto opts = x.options();

    auto dx0 = torch::empty_like(x, opts.dtype(itype));
    at::Tensor dx1;
    if (has_residual) { dx1 = torch::empty_like(x, opts.dtype(rtype)); }
    auto dgamma = torch::empty_like(gamma);
    auto dbeta = torch::empty_like(gamma);
Tri Dao's avatar
Tri Dao committed
321
322
323
324
    at::Tensor dcolscale;
    if (colscale_.has_value()) {
        dcolscale = torch::empty_like(colscale_.value());
    }
325
326
327
328
329
330
331
332

    layer_norm::LaunchParams<layer_norm::BwdParams> launch_params;
    launch_params.stream = at::cuda::getCurrentCUDAStream().stream();
    launch_params.props = at::cuda::getCurrentDeviceProperties();
    TORCH_CHECK(dropout_p < 1.f);
    launch_params.params.dropout_keep_p = 1.f - dropout_p;
    launch_params.params.dx1 = has_residual ? dx1.data_ptr() : nullptr;
    launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr;
Tri Dao's avatar
Tri Dao committed
333
    launch_params.params.colscale = colscale_.has_value() ? colscale_.value().data_ptr() : nullptr;
334

335
336
337
    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024);
    auto launcher = get_bwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple));
338

Tri Dao's avatar
Tri Dao committed
339
    launcher(launch_params, true);
340
341
342

    auto dgamma_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    auto dbeta_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
Tri Dao's avatar
Tri Dao committed
343
344
345
346
    at::Tensor dcolscale_part;
    if (colscale_.has_value()) {
        dcolscale_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    }
347
348
349
350
351
352
    at::Tensor workspace, barrier;

    layer_norm::BwdParams &params = launch_params.params;
    params.rows = rows;
    params.cols = cols;
    params.x = x.data_ptr();
Tri Dao's avatar
Tri Dao committed
353
    params.x0 = x0_.has_value() ? x0_.value().data_ptr() : nullptr;
354
355
356
357
358
    params.dmask = dropout_p > 0.f ? dmask_.value().data_ptr() : nullptr;
    params.mu = mu.data_ptr();
    params.rs = rsigma.data_ptr();
    params.gamma = gamma.data_ptr();
    params.dz = dz.data_ptr();
Tri Dao's avatar
Tri Dao committed
359
    params.dx = dx_.has_value() ? dx_.value().data_ptr() : nullptr;
360
361
362
    params.dx0 = dx0.data_ptr();
    params.dbeta = dbeta.data_ptr();
    params.dgamma = dgamma.data_ptr();
Tri Dao's avatar
Tri Dao committed
363
    params.dcolscale = colscale_.has_value() ? dcolscale.data_ptr() : nullptr;
364
365
    params.dbeta_part = dbeta_part.data_ptr();
    params.dgamma_part = dgamma_part.data_ptr();
Tri Dao's avatar
Tri Dao committed
366
    params.dcolscale_part = colscale_.has_value() ? dcolscale_part.data_ptr() : nullptr;
367
    params.dropout_scale = 1.f / (1.f - dropout_p);
368
    params.inverse_cols = 1.f / float(params.cols);
369
370
371
372
373
374
375
376
377

    if( launch_params.barrier_size > 0 ) {
        // TODO Any way to avoid this?
        barrier = torch::zeros(launch_params.barrier_size, opts.dtype(torch::kInt32));
        workspace = torch::empty(launch_params.workspace_bytes, opts.dtype(torch::kChar));
        params.workspace = workspace.data_ptr();
        params.barrier = barrier.data_ptr<int>();
    }

Tri Dao's avatar
Tri Dao committed
378
    launcher(launch_params, false);
379

Tri Dao's avatar
Tri Dao committed
380
381
382
383
384
385
    std::vector<at::Tensor> result = { dx0, dx1, dgamma, dbeta, dgamma_part, dbeta_part };
    if (colscale_.has_value()) {
        result.push_back(dcolscale);
        result.push_back(dcolscale_part);
    }
    return result;
386
387
388
389
390
391
392
393
}
////////////////////////////////////////////////////////////////////////////////////////////////////

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.doc() = "CUDA DropoutAddLayerNorm";
  m.def("dropout_add_ln_fwd", &dropout_add_ln_fwd, "Run Dropout + Add + LayerNorm forward kernel");
  m.def("dropout_add_ln_bwd", &dropout_add_ln_bwd, "Run Dropout + Add + LayerNorm backward kernel");
}