ln_api.cpp 17.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#include <torch/extension.h>
#include "ATen/cuda/CUDAContext.h"

#include "ln.h"

/*

Supported Type combinations:

input  residual   compute   weights   output
============================================
fp32     fp32      fp32      fp32      fp32
fp16     fp32      fp32      fp32      fp16
fp16     fp16      fp32      fp32      fp16
bf16     fp32      fp32      fp32      bf16
bf16     bf16      fp32      fp32      bf16
fp16     fp16      fp32      fp16      fp16
bf16     bf16      fp32      bf16      bf16

Remarks:
Output type = Input type
Compute always in FP32

*/

namespace layer_norm {

// Create registries and provide runtime versions of config hash functions.

FwdRegistry FWD_FUNCS;
BwdRegistry BWD_FUNCS;

////////////////////////////////////////////////////////////////////////////////////////////////////

uint32_t get_type_id(torch::Dtype dtype){
    if( dtype == torch::kFloat16 ) {
        return TypeId<fp16>::Value;
    } else if( dtype == torch::kBFloat16 ) {
        return TypeId<bf16>::Value;
    } else if( dtype == torch::kFloat32 ) {
        return TypeId<fp32>::Value;
    } else {
        TORCH_CHECK(false, "Type not supported: ", dtype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

uint64_t get_key(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint64_t hidden_size) {
    using namespace layer_norm;
    uint64_t type_key = get_type_id(wtype) | (get_type_id(itype) << 2) | (get_type_id(rtype) << 4) | (get_type_id(otype) << 6) | (get_type_id(ctype) << 8);
    uint64_t launcher_key = (type_key << 32) | hidden_size;
    return launcher_key;
}

}  // namespace layer_norm

////////////////////////////////////////////////////////////////////////////////////////////////////

layer_norm::FwdFunction & get_fwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) {
    auto iter = layer_norm::FWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size));
    if( iter != layer_norm::FWD_FUNCS.end() ) {
        return iter->second;
    } else {
        TORCH_CHECK(false, "FWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

layer_norm::BwdFunction & get_bwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) {
    auto iter = layer_norm::BWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size));
    if( iter != layer_norm::BWD_FUNCS.end() ) {
        return iter->second;
    } else {
        TORCH_CHECK(false, "BWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

std::vector<at::Tensor> dropout_add_ln_fwd(const at::Tensor &x0,      // Input: BxSxhidden_size
                                           c10::optional<const at::Tensor> &x1_,      // Residual: BxSxhidden_size
                                           const at::Tensor &gamma,   // hidden_size
                                           const at::Tensor &beta,   // hidden_size
                                           c10::optional<const at::Tensor> &rowscale_,      // BxS
                                           const float dropout_p,
                                           const float epsilon,
                                           c10::optional<at::Generator> gen_,
                                           bool residual_in_fp32
) {
    auto itype = x0.scalar_type();
    auto rtype = x1_.has_value()
        ? x1_.value().scalar_type()
        : (residual_in_fp32 ? torch::kFloat32 : x0.scalar_type());
    auto wtype = gamma.scalar_type();
    auto otype = itype;
    auto ctype = torch::kFloat32;
    auto mtype = torch::kUInt8;

    TORCH_CHECK(beta.scalar_type() == wtype);

    TORCH_CHECK(x0.is_cuda())
    TORCH_CHECK(gamma.is_cuda())
    TORCH_CHECK(beta.is_cuda())

    TORCH_CHECK(x0.is_contiguous());
    auto sizes = x0.sizes();
    TORCH_CHECK(sizes.size() == 2);

    const int rows = sizes[0];
    const int cols = sizes[1];
    auto hidden_size = gamma.numel();

    if (x1_.has_value()) {
        auto x1 = x1_.value();
        TORCH_CHECK(x1.is_cuda())
        TORCH_CHECK(x1.is_contiguous());
        TORCH_CHECK(x1.sizes() == sizes);
    }

    if (rowscale_.has_value()) {
        auto rowscale = rowscale_.value();
        TORCH_CHECK(rowscale.is_cuda())
        TORCH_CHECK(rowscale.is_contiguous());
        TORCH_CHECK(rowscale.sizes() == std::vector<int64_t>{rows});
        TORCH_CHECK(rowscale.scalar_type() == itype);
    }

    TORCH_CHECK(gamma.sizes() == beta.sizes());
    TORCH_CHECK(hidden_size == cols);

    TORCH_CHECK(epsilon >= 0.f);

    auto opts = x0.options();

    bool save_x = x1_.has_value() || (dropout_p > 0.f) || (itype != rtype);
    at::Tensor x;
    if (save_x) { x = torch::empty(sizes, opts.dtype(rtype)); }
    at::Tensor dmask;
    if (dropout_p > 0.f) { dmask = torch::empty(sizes, opts.dtype(mtype)); };
    auto z = torch::empty(sizes, opts.dtype(otype));

    auto mu = torch::empty({ rows }, opts.dtype(ctype));
    auto rsigma = torch::empty({ rows }, opts.dtype(ctype));

    layer_norm::LaunchParams<layer_norm::FwdParams> launch_params;

    launch_params.props = at::cuda::getCurrentDeviceProperties();
    launch_params.stream = at::cuda::getCurrentCUDAStream().stream();
    TORCH_CHECK(dropout_p < 1.f);
    launch_params.params.dropout_keep_p = 1.f - dropout_p;
    launch_params.params.x1 = x1_.has_value() ? x1_.value().data_ptr() : nullptr;
    launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr;

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

    // Request the kernel launcher.
    auto launcher = get_fwd_launcher(wtype, itype, rtype, otype, ctype, hidden_size);

    // Query the kernel-specific launch parameters.
    launcher(launch_params, true);

    at::Tensor workspace, barrier;

    // Set the kernel runtime parameters.
    layer_norm::FwdParams &params = launch_params.params;
    params.rows = rows;
    params.cols = cols;
    params.x0 = x0.data_ptr();
    params.x = save_x ? x.data_ptr() : nullptr;
    params.dmask = dropout_p > 0.f ? dmask.data_ptr() : nullptr;
    params.mu = mu.data_ptr();
    params.rs = rsigma.data_ptr();
    params.gamma = gamma.data_ptr();
    params.beta = beta.data_ptr();
    params.z = z.data_ptr();
    params.epsilon = epsilon;
    params.dropout_scale = 1.f / (1.f - dropout_p);

    if (dropout_p > 0.f) {
        // number of times random will be generated per thread, to offset philox counter in thc random
        // state
        int64_t counter_offset = launch_params.elts_per_thread;

        // See Note [Acquire lock when using random generators]
        {
            std::lock_guard<std::mutex> lock(gen->mutex_);
            params.philox_args = gen->philox_cuda_state(counter_offset);
        }
    }

    if( launch_params.barrier_size > 0 ) {
        auto options = x0.options();
        barrier = torch::zeros(launch_params.barrier_size, options.dtype(torch::kInt32));
        workspace = torch::empty(launch_params.workspace_bytes, options.dtype(torch::kChar));
        params.workspace = workspace.data_ptr();
        params.barrier = barrier.data_ptr<int>();
    }

    // Launch the kernel.
    launcher(launch_params, false);

    return { z, x, dmask, mu, rsigma };
}

////////////////////////////////////////////////////////////////////////////////////////////////////

std::vector<at::Tensor> dropout_add_ln_bwd(const at::Tensor &dz,     // BxSxhidden_size
                                           const at::Tensor &x,      // BxSxhidden_size
                                           c10::optional<const at::Tensor> &dmask_,  // BxSxhidden_size
                                           const at::Tensor &mu,     // BxS, FP32!
                                           const at::Tensor &rsigma, // BxS, FP32!
                                           const at::Tensor &gamma,   // hidden_size
                                           c10::optional<const at::Tensor> &rowscale_,      // BxS
                                           const float dropout_p,
                                           const bool has_residual
) {

    auto itype = dz.scalar_type();
    auto rtype = x.scalar_type();
    auto wtype = gamma.scalar_type();
    auto otype = itype;
    auto ctype = torch::kFloat32;
    auto mtype = torch::kUInt8;

    if (dropout_p > 0.f) { TORCH_CHECK(dmask_.has_value()); }

    TORCH_CHECK(dz.dtype() == otype);
    TORCH_CHECK(mu.dtype() == ctype);
    TORCH_CHECK(rsigma.dtype() == ctype);

    TORCH_CHECK(x.is_cuda());
    TORCH_CHECK(dz.is_cuda());
    TORCH_CHECK(mu.is_cuda());
    TORCH_CHECK(rsigma.is_cuda());
    TORCH_CHECK(gamma.is_cuda());

    TORCH_CHECK(x.is_contiguous());
    TORCH_CHECK(dz.is_contiguous());

    auto sizes = x.sizes();
    TORCH_CHECK(sizes.size() == 2);
    TORCH_CHECK(dz.sizes() == sizes);
    auto rows = sizes[0];
    auto cols = sizes[1];

    if (dmask_.has_value()) {
        auto dmask = dmask_.value();
        TORCH_CHECK(dmask.dtype() == mtype);
        TORCH_CHECK(dmask.is_cuda());
        TORCH_CHECK(dmask.is_contiguous());
        TORCH_CHECK(dmask.sizes() == sizes);
    }

    if (rowscale_.has_value()) {
        auto rowscale = rowscale_.value();
        TORCH_CHECK(rowscale.is_cuda())
        TORCH_CHECK(rowscale.is_contiguous());
        TORCH_CHECK(rowscale.sizes() == std::vector<int64_t>{rows});
        TORCH_CHECK(rowscale.scalar_type() == itype);
    }

    auto hidden_size = gamma.numel();

    TORCH_CHECK(mu.numel() == rows);
    TORCH_CHECK(mu.sizes() == rsigma.sizes());

    TORCH_CHECK(gamma.numel() == cols);

    auto opts = x.options();

    auto dx0 = torch::empty_like(x, opts.dtype(itype));
    at::Tensor dx1;
    if (has_residual) { dx1 = torch::empty_like(x, opts.dtype(rtype)); }
    auto dgamma = torch::empty_like(gamma);
    auto dbeta = torch::empty_like(gamma);

    layer_norm::LaunchParams<layer_norm::BwdParams> launch_params;
    launch_params.stream = at::cuda::getCurrentCUDAStream().stream();
    launch_params.props = at::cuda::getCurrentDeviceProperties();
    TORCH_CHECK(dropout_p < 1.f);
    launch_params.params.dropout_keep_p = 1.f - dropout_p;
    launch_params.params.dx1 = has_residual ? dx1.data_ptr() : nullptr;
    launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr;

    auto launcher = get_bwd_launcher(wtype, itype, rtype, otype, ctype, hidden_size);

    launcher(launch_params, true, /*prenorm=*/false);

    auto dgamma_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    auto dbeta_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    at::Tensor workspace, barrier;

    layer_norm::BwdParams &params = launch_params.params;
    params.rows = rows;
    params.cols = cols;
    params.x = x.data_ptr();
    params.dmask = dropout_p > 0.f ? dmask_.value().data_ptr() : nullptr;
    params.mu = mu.data_ptr();
    params.rs = rsigma.data_ptr();
    params.gamma = gamma.data_ptr();
    params.dz = dz.data_ptr();
    params.dx0 = dx0.data_ptr();
    params.dbeta = dbeta.data_ptr();
    params.dgamma = dgamma.data_ptr();
    params.dbeta_part = dbeta_part.data_ptr();
    params.dgamma_part = dgamma_part.data_ptr();
    params.dropout_scale = 1.f / (1.f - dropout_p);

    if( launch_params.barrier_size > 0 ) {
        // TODO Any way to avoid this?
        barrier = torch::zeros(launch_params.barrier_size, opts.dtype(torch::kInt32));
        workspace = torch::empty(launch_params.workspace_bytes, opts.dtype(torch::kChar));
        params.workspace = workspace.data_ptr();
        params.barrier = barrier.data_ptr<int>();
    }

    launcher(launch_params, false, /*prenorm=*/false);

    return { dx0, dx1, dgamma, dbeta, dgamma_part, dbeta_part };
}

////////////////////////////////////////////////////////////////////////////////////////////////////

std::vector<at::Tensor> dropout_add_ln_prenorm_bwd(const at::Tensor &dz,     // BxSxhidden_size
                                                   const at::Tensor &dx,     // BxSxhidden_size
                                                   const at::Tensor &x,      // BxSxhidden_size
                                                   c10::optional<const at::Tensor> &dmask_,  // BxSxhidden_size
                                                   const at::Tensor &mu,     // BxS, FP32!
                                                   const at::Tensor &rsigma, // BxS, FP32!
                                                   const at::Tensor &gamma,   // hidden_size
                                                   c10::optional<const at::Tensor> &rowscale_,      // BxS
                                                   const float dropout_p,
                                                   const bool has_residual
) {

    auto itype = dz.scalar_type();
    auto rtype = x.scalar_type();
    auto wtype = gamma.scalar_type();
    auto otype = itype;
    auto ctype = torch::kFloat32;
    auto mtype = torch::kUInt8;

    if (dropout_p > 0.f) { TORCH_CHECK(dmask_.has_value()); }

    TORCH_CHECK(dz.dtype() == otype);
    TORCH_CHECK(dx.dtype() == rtype);
    TORCH_CHECK(mu.dtype() == ctype);
    TORCH_CHECK(rsigma.dtype() == ctype);

    TORCH_CHECK(x.is_cuda());
    TORCH_CHECK(dz.is_cuda());
    TORCH_CHECK(dx.is_cuda());
    TORCH_CHECK(mu.is_cuda());
    TORCH_CHECK(rsigma.is_cuda());
    TORCH_CHECK(gamma.is_cuda());

    TORCH_CHECK(x.is_contiguous());
    TORCH_CHECK(dz.is_contiguous());
    TORCH_CHECK(dx.is_contiguous());

    auto sizes = x.sizes();
    TORCH_CHECK(sizes.size() == 2);
    TORCH_CHECK(dz.sizes() == sizes);
    TORCH_CHECK(dx.sizes() == sizes);
    auto rows = sizes[0];
    auto cols = sizes[1];

    if (dmask_.has_value()) {
        auto dmask = dmask_.value();
        TORCH_CHECK(dmask.dtype() == mtype);
        TORCH_CHECK(dmask.is_cuda());
        TORCH_CHECK(dmask.is_contiguous());
        TORCH_CHECK(dmask.sizes() == sizes);
    }

    if (rowscale_.has_value()) {
        auto rowscale = rowscale_.value();
        TORCH_CHECK(rowscale.is_cuda())
        TORCH_CHECK(rowscale.is_contiguous());
        TORCH_CHECK(rowscale.sizes() == std::vector<int64_t>{rows});
        TORCH_CHECK(rowscale.scalar_type() == itype);
    }

    auto hidden_size = gamma.numel();

    TORCH_CHECK(mu.numel() == rows);
    TORCH_CHECK(mu.sizes() == rsigma.sizes());

    TORCH_CHECK(gamma.numel() == cols);

    auto opts = x.options();

    auto dx0 = torch::empty_like(x, opts.dtype(itype));
    at::Tensor dx1;
    if (has_residual) { dx1 = torch::empty_like(x, opts.dtype(rtype)); }
    auto dgamma = torch::empty_like(gamma);
    auto dbeta = torch::empty_like(gamma);

    layer_norm::LaunchParams<layer_norm::BwdParams> launch_params;
    launch_params.stream = at::cuda::getCurrentCUDAStream().stream();
    launch_params.props = at::cuda::getCurrentDeviceProperties();
    TORCH_CHECK(dropout_p < 1.f);
    launch_params.params.dropout_keep_p = 1.f - dropout_p;
    launch_params.params.dx1 = has_residual ? dx1.data_ptr() : nullptr;
    launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr;

    // TODO: how to set template param for launcher
    auto launcher = get_bwd_launcher(wtype, itype, rtype, otype, ctype, hidden_size);

    launcher(launch_params, true, /*prenorm=*/true);

    auto dgamma_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    auto dbeta_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    at::Tensor workspace, barrier;

    layer_norm::BwdParams &params = launch_params.params;
    params.rows = rows;
    params.cols = cols;
    params.x = x.data_ptr();
    params.dmask = dropout_p > 0.f ? dmask_.value().data_ptr() : nullptr;
    params.mu = mu.data_ptr();
    params.rs = rsigma.data_ptr();
    params.gamma = gamma.data_ptr();
    params.dz = dz.data_ptr();
    params.dx = dx.data_ptr();
    params.dx0 = dx0.data_ptr();
    params.dbeta = dbeta.data_ptr();
    params.dgamma = dgamma.data_ptr();
    params.dbeta_part = dbeta_part.data_ptr();
    params.dgamma_part = dgamma_part.data_ptr();
    params.dropout_scale = 1.f / (1.f - dropout_p);

    if( launch_params.barrier_size > 0 ) {
        // TODO Any way to avoid this?
        barrier = torch::zeros(launch_params.barrier_size, opts.dtype(torch::kInt32));
        workspace = torch::empty(launch_params.workspace_bytes, opts.dtype(torch::kChar));
        params.workspace = workspace.data_ptr();
        params.barrier = barrier.data_ptr<int>();
    }

    launcher(launch_params, false, /*prenorm=*/true);

    return { dx0, dx1, dgamma, dbeta, dgamma_part, dbeta_part };
}
////////////////////////////////////////////////////////////////////////////////////////////////////

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.doc() = "CUDA DropoutAddLayerNorm";
  m.def("dropout_add_ln_fwd", &dropout_add_ln_fwd, "Run Dropout + Add + LayerNorm forward kernel");
  m.def("dropout_add_ln_bwd", &dropout_add_ln_bwd, "Run Dropout + Add + LayerNorm backward kernel");
  m.def("dropout_add_ln_prenorm_bwd", &dropout_add_ln_prenorm_bwd, "Run Dropout + Add + LayerNorm (PreNorm version) backward kernel");
}